Do you want to publish a course? Click here

Surprises in threshold antikaon-nucleon physics

127   0   0.0 ( 0 )
 Added by Jose Antonio Oller
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

Low energy bar{K}N interactions are studied within Unitary Chiral Perturbation Theory at next-to-leading order with ten coupled channels. We pay special attention to the recent precise determination of the strong shift and width of the kaonic hydrogen 1s state by the DEAR Collaboration that has challenged our theoretical understanding of this sector of strong interactions. We typically find two classes of solutions, both of them reproducing previous data, that either can or cannot accommodate the DEAR measurements. The former class has not been previously discussed.



rate research

Read More

In their Comment, Borasoy et al. [arXiv:hep-ph/0512279], criticize our results [PRL 95 (2005) 172502] that accommodate both scattering data and the new accurate measurement by DEAR of the shift and width of kaonic hydrogen. In our calculations we have employed unitary chiral perturbation theory (UCHPT). We discuss why their arguments are irrelevant or do not hold.
53 - Claude Amsler 2019
This report is a historical review of the salient results in low energy antiproton-proton and antineutron-proton annihilation obtained at the Low Energy Antiproton Ring (LEAR), which was operated at CERN between 1983 and 1996. The intention is to provide guidelines for future experiments at the CERN AD/ELENA complex and elsewhere. In the spirit of this workshop, hadron spectroscopy - one of the cornerstones at LEAR - is briefly mentioned, while emphasis is put on the annihilation mechanism on one and two nucleons, the final state multiplicity distributions and the contributions from quarks, in particular in annihilation channels involving strangeness.
Backward angle (u-channel) scattering provides complementary information for studies of hadron spectroscopy and structure, but has been less comprehensively studied than the corresponding forward angle case. As a result, the physics of u-channel scattering poses a range of new experimental and theoretical opportunities and questions. We summarize recent progress in measuring and understanding high energy reactions with baryon charge exchange in the u-channel, as discussed in the first backward angle (u-channel) Physics Workshop. In particular, we discuss backward angle measurements and their theoretical description via both hadronic models and the collinear factorization approach, and discuss planned future measurements of u-channel physics. Finally, we propose outstanding questions and challenges for u-channel physics.
82 - F. Arleo , P. Aurenche , F. Bopp 2003
Various pion and photon production mechanisms in high-energy nuclear collisions at RHIC and LHC are discussed. Comparison with RHIC data is done whenever possible. The prospect of using electromagnetic probes to characterize quark-gluon plasma formation is assessed.
75 - W. Cosyn , C. Weiss 2020
Background: DIS on the polarized deuteron with detection of a proton in the nuclear breakup region (spectator tagging) represents a unique method for extracting the neutron spin structure functions and studying nuclear modifications. The tagged proton momentum controls the nuclear configuration during the DIS process and enables a differential analysis of nuclear effects. Such measurements could be performed with the future electron-ion collider (EIC) and forward proton detectors if deuteron beam polarization could be achieved. Purpose: Develop theoretical framework for polarized deuteron DIS with spectator tagging. Formulate procedures for neutron spin structure extraction. Methods: A covariant spin density matrix formalism is used to describe general deuteron polarization in collider experiments (vector/tensor, pure/mixed). Light-front (LF) quantum mechanics is employed to factorize nuclear and nucleonic structure in the DIS process. A 4-dimensional representation of LF spin structure is used to construct the polarized deuteron LF wave function and efficiently evaluate the spin sums. Free neutron structure is extracted using the impulse approximation and analyticity in the tagged proton momentum (pole extrapolation). Results: General expressions of the polarized tagged DIS observables in collider experiments. Analytic and numerical study of the polarized deuteron LF spectral function and nucleon momentum distributions. Practical procedures for neutron spin structure extraction from the tagged deuteron spin asymmetries. Conclusions: Spectator tagging provides new tools for precise neutron spin structure measurements. D-wave depolarization and nuclear binding effects can be eliminated through the tagged proton momentum dependence. The methods can be extended to tensor-polarized observables, spin-orbit effects, and diffractive processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا