No Arabic abstract
Backward angle (u-channel) scattering provides complementary information for studies of hadron spectroscopy and structure, but has been less comprehensively studied than the corresponding forward angle case. As a result, the physics of u-channel scattering poses a range of new experimental and theoretical opportunities and questions. We summarize recent progress in measuring and understanding high energy reactions with baryon charge exchange in the u-channel, as discussed in the first backward angle (u-channel) Physics Workshop. In particular, we discuss backward angle measurements and their theoretical description via both hadronic models and the collinear factorization approach, and discuss planned future measurements of u-channel physics. Finally, we propose outstanding questions and challenges for u-channel physics.
Backward-angle meson electroproduction above the resonance region, which was previously ignored, is anticipated to offer unique access to the three quark plus sea component of the nucleon wave function. In this letter, we present the first complete separation of the four electromagnetic structure functions above the resonance region in exclusive omega electroproduction off the proton, e + p -> e + p + omega, at central Q^2 values of 1.60, 2.45 GeV^2 , at W = 2.21 GeV. The results of our pioneering -u ~ -u min study demonstrate the existence of a unanticipated backward-angle cross section peak and the feasibility of full L/T/LT/TT separations in this never explored kinematic territory. At Q^2 =2.45 GeV^2 , the observed dominance of sigma_T over sigma_L, is qualitatively consistent with the collinear QCD description in the near-backward regime, in which the scattering amplitude factorizes into a hard subprocess amplitude and baryon to meson transition distribution amplitudes (TDAs): universal non-perturbative objects only accessible through backward angle kinematics.
A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of cbar{c}, bbar{b}, and bbar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.
The Precision Reactor Oscillation and Spectrum Experiment, PROSPECT, has made world-leading measurements of reactor antineutrinos at short baselines. In its first phase, conducted at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, PROSPECT produced some of the strongest limits on eV-scale sterile neutrinos, made a precision measurement of the reactor antineutrino spectrum from $^{235}$U, and demonstrated the observation of reactor antineutrinos in an aboveground detector with good energy resolution and well-controlled backgrounds. The PROSPECT collaboration is now preparing an upgraded detector, PROSPECT-II, to probe yet unexplored parameter space for sterile neutrinos and contribute to a full resolution of the Reactor Antineutrino Anomaly, a longstanding puzzle in neutrino physics. By pressing forward on the worlds most precise measurement of the $^{235}$U antineutrino spectrum and measuring the absolute flux of antineutrinos from $^{235}$U, PROSPECT-II will sharpen a tool with potential value for basic neutrino science, nuclear data validation, and nuclear security applications. Following a two-year deployment at HFIR, an additional PROSPECT-II deployment at a low enriched uranium reactor could make complementary measurements of the neutrino yield from other fission isotopes. PROSPECT-II provides a unique opportunity to continue the study of reactor antineutrinos at short baselines, taking advantage of demonstrated elements of the original PROSPECT design and close access to a highly enriched uranium reactor core.
The recent exclusive backward-angle electroproduction of omega from Jefferson Lab Hall C electron-proton fixed-target scattering experiments above the resonance region hints at a new domain of applicability of QCD factorization in a unique u-channel kinematics regime. Thanks to this effort, the interest in studying nucleon structure through u-channel meson production observables has grown significantly. In the fixed target configuration, the u-channel meson electroproduction observables feature a unique interaction picture: the target proton absorbs nearly all momentum induced by virtual photons and recoils forward, while the produced mesons (such as omega or pions) are left behind almost at rest near the target station. In this presentation, We provide a summary of the key observations of the existing u-channel meson production results, update-to-date theory insights, and a path to further exploration from JLab 12 GeV Hall C program to the future Electron-Ion Colliders.
We study possible new physics contributions in $Btopitaubar u $ and $Btotaubar u$ employing the model-independent effective Lagrangian that describes the quark-level transition $b to u tau u$ at low energies. The decay rate of $Btopitaubar u$ and its theoretical uncertainty are evaluated using the $Btopi$ form factors given by recent lattice QCD studies. Comparing theoretical results with the current experimental data, $mathcal{B}(Btopitaubar u)<2.5times 10^{-4}$ and $mathcal{B}(Btotaubar u)=(1.14pm 0.22)times 10^{-4}$, we obtain constraints on the Wilson coefficients that quantify potential new physics. We also present the expected sensitivity of the SuperKEKB/Belle~II experiment.