Do you want to publish a course? Click here

Effects of perturbative exchanges in a QCD-string model

51   0   0.0 ( 0 )
 Added by Hans Weda
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

The QCD-string model for baryons derived by Simonov and used for the calculation of baryon magnetic moments in a previous paper is extended to include also perturbative gluon and meson exchanges. The mass spectrum of the baryon multiplet is studied. For the meson interaction either the pseudoscalar or pseudovector coupling is used. Predictions are compared with the experimental data. Besides these exchanges the influence of excited quark orbitals on the baryon ground state are considered by performing a multichannel calculation. The nucleon-Delta splitting increases due to the mixing of higher quark states while the baryon magnetic momenta decrease. The multichannel calculation with perturbative exchanges is shown to yield reasonable magnetic moments while the mass spectrum is close to experiment.



rate research

Read More

We study the effect of various perturbative and nonperturbative QCD corrections on the free nucleon structure functions ($F_{iN}^{WI}(x,Q^2); ~i=1-3$) and their implications in the determination of nuclear structure functions. The evaluation of the nucleon structure functions has been performed by using the MMHT 2014 PDFs parameterization, and the TMC and HT effects are incorporated following the works of Schienbein et al. and Dasgupta et al., respectively. These nucleon structure functions are taken as input in the determination of nuclear structure functions. The numerical calculations for the $ u_l/bar u_l-A$ DIS process have been performed by incorporating the nuclear medium effects like Fermi motion, binding energy, nucleon correlations, mesonic contributions, shadowing and antishadowing in several nuclear targets such as carbon, polystyrene scintillator, iron and lead which are being used in MINERvA, and in argon nucleus which is relevant for the ArgoNeuT and DUNE experiments. The differential scattering cross sections $frac{d^2sigma_A^{WI}}{dx dy}$ and $(frac{dsigma_A^{WI}}{dx}/frac{dsigma_{CH}^{WI}}{dx})$ have also been studied in the kinematic region of MINERvA experiment. The theoretical results are compared with the recent experimental data of MINERvA and the earlier data of NuTeV, CCFR, CDHSW and CHORUS collaborations. Moreover, a comparative analysis of the present results for the ratio $(frac{dsigma_A^{WI}}{dx}/frac{dsigma_{CH}^{WI}}{dx})$, and the results from the MC generator GENIE and other phenomenological models of Bodek and Yang, and Cloet et al., has been performed in the context of MINERvA experiment. The predictions have also been made for $bar u_l-A$ cross section relevant for MINERvA experiment.
We introduce an event-by-event perturbative-QCD + saturation + hydro (EKRT) framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order perturbative QCD using a saturation conjecture to control soft particle production, and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries, against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow, and event-plane angle correlations, with the experimental data from Pb+Pb collisions at the LHC. We show how such a systematic multi-energy and multi-observable analysis tests the initial state calculation and the applicability region of hydrodynamics, and in particular how it constrains the temperature dependence of the shear viscosity-to-entropy ratio of QCD matter in its different phases in a remarkably consistent manner.
Transport coefficients serve as important probes in characterizing the QCD matter created in high-energy heavy-ion collisions. Thermal and electrical conductivities as transport coefficients have got special significance in studying the time evolution of the created matter. We have adopted color string percolation approach for the estimation of thermal conductivity ($kappa$), electrical conductivity ($sigma_{el}$) and their ratio, which is popularly known as Wiedemann-Franz law in condensed matter physics. The ratio $kappa/sigma_{el}T$, which is also known as Lorenz number ($mathbb{L}$) is studied as a function of temperature and is compared with various theoretical calculations. We observe that the thermal conductivity for hot QCD medium is almost temperature independent in the present formalism and matches with the results obtained in ideal equation of state (EOS) for quark-gluon plasma with fixed coupling constant ($alpha_s$). The obtained Lorenz number is compared with the Stefan-Boltzmann limit for an ideal gas. We observe that a hot QCD medium with color degrees of freedom behaves like a free electron gas.
We consider the Quasilocal Quark Model of NJL type (QNJLM) as an effective theory of non-perturbative QCD including scalar (S), pseudoscalar (P), vector (V) and axial-vector (A) four-fermion interaction with derivatives. In the presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence the composite meson states are generated in all channels. With the help of Operator Product Expansion the appropriate set of Chiral Symmetry Restoration (CSR) Sum Rules in these channels are imposed as matching conditions to QCD at intermediate energies. The mass spectrum and some decay constants for ground and excited meson states are calculated.
67 - C.A.S. Bahia , M. Broilo , 2015
We study infrared contributions to semihard parton-parton interactions by considering an effective charge whose finite infrared behavior is constrained by a dynamical mass scale. Using an eikonal QCD-based model in order to connect this semihard parton-level dynamics to the hadron-hadron scattering, we obtain predictions for the proton-proton ($pp$) and antiproton-proton ($bar{p}p$) total cross sections, $sigma_{tot}^{pp,bar{p}p}$, and the ratios of the real to imaginary part of the forward scattering amplitude, $rho^{pp,bar{p}p}$. We discuss the theoretical aspects of this formalism and consider the phenomenological implications of a class of energy-dependent form factors in the high-energy behavior of the forward amplitude. We introduce integral dispersion relations specially tailored to relate the real and imaginary parts of eikonals with energy-dependent form factors. Our results, obtained using a group of updated sets of parton distribution functions (PDFs), are consistent with the recent data from the TOTEM, AUGER and Telescope Array experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا