Do you want to publish a course? Click here

Testing collinear factorization and nuclear parton distributions with pA collisions at the LHC

301   0   0.0 ( 0 )
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.



rate research

Read More

Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non-linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.
Global perturbative QCD analyses, based on large data sets from e-p and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non-linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision programme at the LHC, including a rapidity scan, would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.
This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.
Using QCD calculations of the cross section of inclusive dijet photoproduction in Pb-Pb ultraperipheral collisions in the LHC kinematics as pseudo-data, we study the effect of including these data using the Bayesian reweighting technique on nCTEQ15, nCTEQ15np, and EPPS16 nuclear parton distribution functions (nPDFs). We find that, depending on the assumed error of the pseudo-data, it leads to a significant reduction of the nPDF uncertainties at small values of the momentum fraction $x_A$. Taking the error to be 5%, the uncertainty of nCTEQ15 and nCTEQ15np nPDFs reduces approximately by a factor of two at $x_A=10^{-3}$. At the same time, the reweighting effect on EPPS16 nPDFs is much smaller due to the higher value of the tolerance and a more flexible parametrization form.
In this paper we estimate the double parton scattering (DPS) contribution for the heavy quark production in $pA$ collisions at the LHC. The cross sections for the charm and bottom production are estimated using the dipole approach and taking into account the saturation effects, which are important for high energies and for the scattering with a large nucleus. We compare the DPS contribution with the single parton scattering one and demonstrate that in the case of charm production both are similar in the kinematical range probed by the LHC. Predictions for the rapidity range analysed by the LHCb Collaboration are also presented. Our results indicate that the study of the DPS contribution for the heavy quark production in $pPb$ collisions at the LHC is feasible and can be useful to probe the main assumptions of the approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا