Do you want to publish a course? Click here

Nonlinear effects in Compton scattering at photon colliders

124   0   0.0 ( 0 )
 Added by Valery Telnov
 Publication date 2000
  fields Physics
and research's language is English
 Authors M.Galynskii




Ask ChatGPT about the research

The backward Compton scattering is a basic process at future higher energy photon colliders. To obtain a high probability of e->gamma conversion the density of laser photons in the conversion region should be so high that simultaneous interaction of one electron with several laser photons is possible (nonlinear Compton effect). In this paper a detailed consideration of energy spectra, helicities of final photons and electrons in nonlinear backward Compton scattering of circularly polarized laser photons is given. Distributions of gamma-gamma luminosities with total helicities 0 and 2 are investigated. Very high intensity of laser wave leads to broadening of the energy (luminosity) spectra and shift to lower energies (invariant masses). Beside complicated exact formulae, approximate formulae for energy spectrum and polarization of backscattered photons are given for relatively small nonlinear parameter xi^2 (first order correction). All this is necessary for optimization of the conversion region at photon colliders and study of physics processes where a sharp edge of the luminosity spectrum and monochromaticity of collisions are important.



rate research

Read More

134 - T. Heinzl , D. Seipt , B. Kampfer 2009
We discuss intensity effects in collisions between beams of optical photons from a high-power laser and relativistic electrons. Our main focus are the modifications of the emission spectra due to realistic finite-beam geometries. By carefully analyzing the classical limit we precisely quantify the distinction between strong-field QED Compton scattering and classical Thomson scattering. A purely classical, but fully covariant, calculation of the bremsstrahlung emitted by an electron in a plane wave laser field yields radiation into harmonics, as expected. This result is generalized to pulses of finite duration and explains the appearance of line broadening and harmonic substructure as an interference phenomenon. The ensuing numerical treatment confirms that strong focussing of the laser leads to a broad continuum while higher harmonics become visible only at moderate focussing, hence lower intensity. We present a scaling law for the backscattered photon spectral density which facilitates averaging over electron beam phase space. Finally, we propose a set of realistic parameters such that the observation of intensity induced spectral red-shift, higher harmonics, and their substructure, becomes feasible.
The photon spectrum from electrons scattering on multiple laser pulses exhibits interference effects not present for scattering on a single pulse. We investigate the conditions required for the experimental observation of these interference effects in electron-laser collisions, in particular analysing the roles of the detector resolution and the transverse divergence of the pump electron beam.
Future lepton colliders will be precision machines whose physics program includes close study of the Higgs sector and searches for new physics via polarised beams. The luminosity requirements of such machines entail very intense lepton bunches at the interaction point with associated strong electromagnetic fields. These strong fields not only lead to obvious phenomena such as beamstrahlung, but also potentially affect every particle physics process via virtual exchange with the bunch fields. For precision studies, strong field effects have to be understood to the sub-percent level. Strong external field effects can be taken into account exactly via the Furry Picture or, in certain limits, via the Quasi-classical Operator method . Significant theoretical development is in progress and here we outline the current state of play.
The tremendous progress in high-intensity laser technology and the establishment of dedicated high-field laboratories in recent years have paved the way towards a first observation of quantum vacuum nonlinearities at the high-intensity frontier. We advocate a particularly prospective scenario, where three synchronized high-intensity laser pulses are brought into collision, giving rise to signal photons, whose frequency and propagation direction differ from the driving laser pulses, thus providing various means to achieve an excellent signal to background separation. Based on the theoretical concept of vacuum emission, we employ an efficient numerical algorithm which allows us to model the collision of focused high-intensity laser pulses in unprecedented detail. We provide accurate predictions for the numbers of signal photons accessible in experiment. Our study paves the way for a first verification of quantum vacuum nonlinearity in a well-controlled laboratory experiment at one of the many high-intensity laser facilities currently coming online.
We study single, double and higher-order nonlinear Compton scattering where an electron interacts nonlinearly with a high-intensity laser and emits one, two or more photons. We study, in particular, how double Compton scattering is separated into one-step and two-step parts, where the latter is obtained from an incoherent product of two single-photon emissions. We include all contributions to double Compton scattering and show that the exchange term, which was not calculated in previous constant-crossed field studies, is in general on the same order of magnitude as the other one-step terms. Our approach reveals practically useful similarities between double Compton scattering and the trident process, which allows us to transfer some of our previous results for trident to double Compton scattering. We provide a new gluing approach for obtaining the dominant contribution to higher-order Compton scattering for long laser pulses. Unlike the standard gluing approach, our new approach does not require the intensity parameter $a_0$ to be much larger than one. For `hard photons we obtain several saddle-point approximations for various field shapes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا