Do you want to publish a course? Click here

Photon-photon scattering at the high-intensity frontier

100   0   0.0 ( 0 )
 Added by Felix Karbstein
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The tremendous progress in high-intensity laser technology and the establishment of dedicated high-field laboratories in recent years have paved the way towards a first observation of quantum vacuum nonlinearities at the high-intensity frontier. We advocate a particularly prospective scenario, where three synchronized high-intensity laser pulses are brought into collision, giving rise to signal photons, whose frequency and propagation direction differ from the driving laser pulses, thus providing various means to achieve an excellent signal to background separation. Based on the theoretical concept of vacuum emission, we employ an efficient numerical algorithm which allows us to model the collision of focused high-intensity laser pulses in unprecedented detail. We provide accurate predictions for the numbers of signal photons accessible in experiment. Our study paves the way for a first verification of quantum vacuum nonlinearity in a well-controlled laboratory experiment at one of the many high-intensity laser facilities currently coming online.



rate research

Read More

Ultra-peripheral collisions (UPCs) involving heavy ions and protons are the energy frontier for photon-mediated interactions. UPC photons can be used for many purposes, including probing low-$x$ gluons via photoproduction of dijets and vector mesons, probes of beyond-standard-model processes, such as those enabled by light-by-light scattering, and studies of two-photon production of the Higgs.
123 - M.Galynskii 2000
The backward Compton scattering is a basic process at future higher energy photon colliders. To obtain a high probability of e->gamma conversion the density of laser photons in the conversion region should be so high that simultaneous interaction of one electron with several laser photons is possible (nonlinear Compton effect). In this paper a detailed consideration of energy spectra, helicities of final photons and electrons in nonlinear backward Compton scattering of circularly polarized laser photons is given. Distributions of gamma-gamma luminosities with total helicities 0 and 2 are investigated. Very high intensity of laser wave leads to broadening of the energy (luminosity) spectra and shift to lower energies (invariant masses). Beside complicated exact formulae, approximate formulae for energy spectrum and polarization of backscattered photons are given for relatively small nonlinear parameter xi^2 (first order correction). All this is necessary for optimization of the conversion region at photon colliders and study of physics processes where a sharp edge of the luminosity spectrum and monochromaticity of collisions are important.
In this Snowmass whitepaper, we describe the impact of ongoing and proposed intensity frontier experiments on the parameter space of the Minimally Supersymmetric Standard Model (MSSM). We extend a set of phenomenological MSSM (pMSSM) models to include non-zero CP-violating phases and study the sensitivity of various flavor observables in these scenarios Future electric dipole moment and rare meson decay experiments can have a strong impact on the viability of these models that is relatively independent of the detailed superpartner spectrum. In particular, we find that these experiments have the potential to probe models that are expected to escape searches at the high-luminosity LHC.
A study is presented to extend the measurements of photon-photon scattering in ultra-peripheral Pb-Pb collisions at the LHC into the mass region of the pseudoscalar resonances $eta$ and $eta$. The elementary photon-photon scattering cross section is presented. The cross section for photon-photon scattering in Pb-Pb is derived by convoluting the elementary photon-photon cross section with the Pb-Pb photon luminosity. The main background to two-photon final states, arising from double $pi^{0}$ production with two of the four decay photons escaping detection, is examined, and possible kinematical conditions are discussed to optimize the signal-to-background ratio for such measurements at mid-rapidity.
228 - J.L. Hewett , H. Weerts , R. Brock 2012
The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا