Do you want to publish a course? Click here

Phases of Chiral Gauge Theories

135   0   0.0 ( 0 )
 Added by Francesco Sannino
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the behavior of two non-supersymmetric chiral SU(N) gauge theories, involving fermions in the symmetric and antisymmetric two-index tensor representations respectively. In addition to global anomaly matching, we employ a recently proposed inequality constraint on the number of effective low energy (massless) degrees of freedom of a theory, based on the thermodynamic free energy. Several possible zero temperature phases are consistent with the constraints. A simple picture for the phase structure emerges if these theories choose the phase, consistent with global anomaly matching, that minimizes the massless degree of freedom count defined through the free energy. This idea suggests that confinement with the preservation of the global symmetries through the formation of massless composite fermions is in general not preferred. While our discussion is restricted mainly to bilinear condensate formation, higher dimensional condensates are considered for one case. We conclude by commenting briefly on two related supersymmetric chiral theories.



rate research

Read More

We construct chiral theories with the smallest number $n_chi$ of Weyl fermions that form an anomaly-free set under various Abelian gauge groups. For the $U(1)$ group, where $n_chi = 5$, we show that the general solution to the anomaly equations is a set of charges given by cubic polynomials in three integer parameters. For the $U(1) times U(1)$ gauge group we find $n_chi = 6$, and derive the general solution to the anomaly equations, in terms of 6 parameters. For $U(1) times U(1) times U(1)$ we show that $n_chi = 8$, and present some families of solutions. These chiral gauge theories have potential applications to dark matter models, right-handed neutrino interactions, and other extensions of the Standard Model. As an example, we present a simple dark sector with a natural mass hierarchy between three dark matter components.
QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC) at $T<T_c$ creates electric confinement and flux tubes. The magnetic scenario of QCD proposes that scattering on the non-condensed component of the monopole ensemble at $T>T_c$ plays an important role in explaining the properties of strongly coupled quark-gluon plasma (sQGP) near the deconfinement temperature. In this paper, we study the phenomenon of chiral symmetry breaking and its relation to magnetic monopoles. Specifically, we study the eigenvalue spectrum of the Dirac operator in the basis of fermionic zero modes in an SU(2) monopole background. We find that as the temperature approaches the deconfinement temperature $T_c$ from above, the eigenvalue spectrum has a finite density at $omega = 0$, indicating the presence of a chiral condensate. In addition, we find the critical scaling of the eigenvalue gap to be consistent with that of the correlation length in the 3d Ising model and the BEC transition of monopoles on the lattice.
326 - P. Pouliot 1995
We study $N=1$ SUSY gauge theories in four dimensions with gauge group $Spin(7)$ and $N_f$ flavors of quarks in the spinorial representation. We find that in the range $6< N_f < 15$, this theory has a long distance description in terms of an $SU(N_f-4)$ gauge theory with a symmetric tensor and $N_f$ antifundamentals. As a spin-off, we obtain by deforming along a flat direction a dual description of the theories based on the exceptional gauge group $G_2$ with $N_f$ fundamental flavors of quarks.
155 - Werner Kerler 2003
Only requiring that Dirac operators decribing massless fermions on the lattice decompose into Weyl operators we arrive at a large class of them. After deriving general relations from spectral representations we study correlation functions of Weyl fermions for any value of the index, stressing the related conditions for basis transformations and getting the precise behaviors under gauge and CP transformations. Using the detailed structure of the chiral projections we also obtain a form of the correlation functions with a determinant in the general case.
110 - Werner Kerler 2004
We present a formulation of chiral gauge theories, which admits more general spectra of Dirac operators and reveals considerably more possibilities for the structure of the chiral projections. Our two forms of correlation functions both also apply in the presence of zero modes and for any value of the index. The decomposition of the total set of pairs of bases into equivalence classes is carefully analyzed. Transformation properties are derived.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا