No Arabic abstract
We study $N=1$ SUSY gauge theories in four dimensions with gauge group $Spin(7)$ and $N_f$ flavors of quarks in the spinorial representation. We find that in the range $6< N_f < 15$, this theory has a long distance description in terms of an $SU(N_f-4)$ gauge theory with a symmetric tensor and $N_f$ antifundamentals. As a spin-off, we obtain by deforming along a flat direction a dual description of the theories based on the exceptional gauge group $G_2$ with $N_f$ fundamental flavors of quarks.
We present evidence for renormalization group fixed points with dual magnetic descriptions in fourteen new classes of four-dimensional $N=1$ supersymmetric models. Nine of these classes are chiral and many involve two or three gauge groups. These theories are generalizations of models presented earlier by Seiberg, by Kutasov and Schwimmer, and by the present authors. The different classes are interrelated; one can flow from one class to another using confinement or symmetry breaking.
We compare gap equation predictions for the spontaneous breaking of global symmetries in supersymmetric Yang-Mills theory to nonperturbative results from holomorphic effective action techniques. In the theory without matter fields, both approaches describe the formation of a gluino condensate. With $N_f$ flavors of quark and squark fields, and with $N_f$ below a certain critical value, the coupled gap equations have a solution for quark and gluino condensate formation, corresponding to breaking of global symmetries and of supersymmetry. This appears to disagree with the newer nonperturbative techniques, but the reliability of gap equations in this context and whether the solution represents the ground state remain unclear.
We discuss the behavior of two non-supersymmetric chiral SU(N) gauge theories, involving fermions in the symmetric and antisymmetric two-index tensor representations respectively. In addition to global anomaly matching, we employ a recently proposed inequality constraint on the number of effective low energy (massless) degrees of freedom of a theory, based on the thermodynamic free energy. Several possible zero temperature phases are consistent with the constraints. A simple picture for the phase structure emerges if these theories choose the phase, consistent with global anomaly matching, that minimizes the massless degree of freedom count defined through the free energy. This idea suggests that confinement with the preservation of the global symmetries through the formation of massless composite fermions is in general not preferred. While our discussion is restricted mainly to bilinear condensate formation, higher dimensional condensates are considered for one case. We conclude by commenting briefly on two related supersymmetric chiral theories.
We reconsider gauge-transformation properties in chiral gauge theories on the lattice observing all pertinent information and show that these properties are actually determined in a general way for any gauge group and for any value of the index. In our investigations we also clarify several related issues.
Only requiring that Dirac operators decribing massless fermions on the lattice decompose into Weyl operators we arrive at a large class of them. After deriving general relations from spectral representations we study correlation functions of Weyl fermions for any value of the index, stressing the related conditions for basis transformations and getting the precise behaviors under gauge and CP transformations. Using the detailed structure of the chiral projections we also obtain a form of the correlation functions with a determinant in the general case.