Do you want to publish a course? Click here

QCD equation of state with 2+1 flavors of improved staggered quarks

85   0   0.0 ( 0 )
 Added by Ludmila Levkova
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We report results for the interaction measure, pressure and energy density for nonzero temperature QCD with 2+1 flavors of improved staggered quarks. In our simulations we use a Symanzik improved gauge action and the Asqtad $O(a^2)$ improved staggered quark action for lattices with temporal extent $N_t=4$ and 6. The heavy quark mass $m_s$ is fixed at approximately the physical strange quark mass and the two degenerate light quarks have masses $m_{ud}approx0.1 m_s$ or $0.2 m_s$. The calculation of the thermodynamic observables employs the integral method where energy density and pressure are obtained by integration over the interaction measure.



rate research

Read More

We report on a study of QCD thermodynamics with three flavors of quarks, using a Symanzik improved gauge action and the Asqtad O(a^2) improved staggered quark action. Simulations were carried out with lattice spacings 1/4T, 1/6T and 1/8T both for three degenerate quarks with masses less than or equal to the strange quark mass, m_s, and for degenerate up and down quarks with masses in the range 0.1 m_s leq m_{u,d} leq 0.6 m_s, and the strange quark mass fixed near its physical value. We present results for standard thermodynamics quantities, such as the Polyakov loop, the chiral order parameter and its susceptibility. For the quark masses studied to date we find a rapid crossover rather than a bona fide phase transition. We have carried out the first calculations of quark number susceptibilities with three flavors of sea quarks. These quantities are of physical interest because they are related to event-by-event fluctuations in heavy ion collision experiments. Comparison of susceptibilities at different lattice spacings show that our results are close to the continuum values.
We present an update of our study of high temperature QCD with three flavors of quarks, using a Symanzik improved gauge action and the Asqtad staggered quark action. Simulations are being carried out on lattices with Nt=4, 6 and 8 for the case of three degenerate quarks with masses less than or equal to the strange quark mass, $m_s$, and on lattices with Nt=6 and 8 for degenerate up and down quarks with masses in the range 0.2 m_s leq m_{u,d} leq 0.6 m_s, and the strange quark fixed near its physical value. We also report on first computations of quark number susceptibilities with the Asqtad action. These susceptibilities are of interest because they can be related to event-by-event fluctuations in heavy ion collision experiments. Use of the improved quark action leads to a substantial reduction in lattice artifacts. This can be seen already for free fermions and carries over into our results for QCD.
We present results from our simulations of quantum chromodynamics (QCD) with four flavors of quarks: u, d, s, and c. These simulations are performed with a one-loop Symanzik improved gauge action, and the highly improved staggered quark (HISQ) action. We are generating gauge configurations with four values of the lattice spacing ranging from 0.06 fm to 0.15 fm, and three values of the light quark mass, including the value for which the Goldstone pion mass is equal to the physical pion mass. We discuss simulation algorithms, scale setting, taste symmetry breaking, and the autocorrelations of various quantities. We also present results for the topological susceptibility which demonstrate the improvement of the HISQ configurations relative to those generated earlier with the asqtad improved staggered action.
165 - T. Burch 2009
We present results from an ongoing lattice study of the lowest lying charmonium and bottomonium level splittings using the Fermilab heavy quark formalism. Our objective is to test the performance of this action on MILC-collaboration ensembles of (2+1) flavors of light improved staggered (asqtad) quarks. Measurements are done on 16 ensembles with degenerate up and down quarks of various masses, thus permitting a chiral extrapolation, and over lattice spacings ranging from 0.09 fm to 0.18 fm, thus permitting study of lattice-spacing dependence. We examine combinations of the mass splittings that are sensitive to components of the effective quarkonium potential.
We present results of a first study of equation of state in finite-temperature QCD with two flavors of Wilson-type quarks. Simulations are made on lattices with temporal size $N_t=4$ and 6, using an RG-improved action for the gluon sector and a meanfield-improved clover action for the quark sector. The lines of constant physics corresponding to fixed values of the ratio $m_{rm PS}/m_{rm V}$ of the pseudo-scalar to vector meson masses at zero temperature are determined, and the beta functions which describe the renormalization-group flow along these lines are calculated. Using these results, the energy density and the pressure are calculated as functions of temperature along the lines of constant physics in the range $m_{rm PS}/m_{rm V} = 0.65$--0.95. The quark mass dependence in the equation of state is found to be small for $m_{rm PS}/m_{rm V} simlt 0.8$. Comparison of results for $N_t=4$ and $N_t=6$ lattices show significant scaling violation present in the $N_t=4$ results. At high temperatures the results for $N_t=6$ are quite close to the continuum Stefan-Boltzmann limit, suggesting the possibility of a precise continuum extrapolation of thermodynamic quantities from simulations at $N_tsimgt 6$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا