Do you want to publish a course? Click here

Light hadron spectrum in three-flavor QCD with O(a)-improved Wilson quark action

266   0   0.0 ( 0 )
 Added by Takashi Kaneko
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

We report on a calculation of the light hadron spectrum and quark masses in three-flavor dynamical QCD using the non-perturbatively O(a)-improved Wilson quark action and a renormalization-group improved gauge action. Simulations are carried out on a 16^3 times 32 lattice at beta=1.9, where a^{-1} simeq 2GeV, with 6 ud quark masses corresponding to m_{pi}/m_{rho} simeq 0.64-0.77 and 2 s quark masses close to the physical value. We observe that the inclusion of dynamical strange quark brings the lattice QCD meson spectrum to good agreement with experiment. Dynamical strange quarks also lead to a reduction of the uds quark masses by about 15%.



rate research

Read More

We present a summary of results of the joint CP-PACS and JLQCD project toward a 2+1 flavor full QCD simulation with the O(a)-improved Wilson quark formalism and the Iwasaki gauge action. Configurations were generated during 2002-2005 at three lattice spacings, a~0.076, 0.100 and 0.122 fm, keeping the physical volume constant at (2.0fm)^3. Up and down quark masses are taken in the range m_{PS}/m_V~0.6-0.78. We have completed the analysis for the light meson spectrum and quark masses in the continuum limit using the full configuration set. The predicted meson masses reproduce experimental values in the continuum limit at a 1% level. The average up and down, and strange quark masses turn out to be m_{ud}^{bar{MS}}(mu=2 GeV)=3.50(14)({}^{+26}_{-15}) MeV and m_s^{bar{MS}}(mu=2 GeV)=91.8(3.9)({}^{+6.8}_{-4.1}) MeV. We discuss our future strategy toward definitive results on hadron spectroscopy with the Wilson-clover formalism.
We present preliminary results for the light harden spectrum in $N_f=2+1$ lattice QCD obtained with the nonperturbatively $O(a)$-improved Wilson quark action and the Iwasaki gauge action. Simulations are carried out at $beta=1.90$ on a $32^3 times 64$ lattice using the PACS-CS computer. We employ Luschers domain-decomposed HMC algorithm to reduce the up-down quark masses toward the physical value. The pseudoscalar meson masses range from 730 MeV down to 210 MeV. We compare the light harden spectrum extrapolated to the physical point with the experimental values.
We explore sea quark effects in the light hadron mass spectrum in a simulation of two-flavor QCD using the nonperturbatively O(a)-improved Wilson fermion action. In order to identify finite-size effects, light meson masses are measured on 12^3x48, 16^3x48 and 20^3x48 lattices with a~0.1 fm. On the largest lattice, where the finite-size effect is negligible, we find a significant increase of the strange vector meson mass compared to the quenched approximation. We also investigate the quark mass dependence of pseudoscalar meson masses and decay constants and test the consistency with (partially quenched) chiral perturbation theory.
We perform a non-perturbative determination of the O(a)-improvement coefficient c_SW for the Wilson quark action in three-flavor QCD with the plaquette gauge action. Numerical simulations are carried out in a range of beta=12.0-5.2 on a single lattice size of 8^3x16 employing the Schrodinger functional setup of lattice QCD. As our main result, we obtain an interpolation formula for c_SW and the critical hopping parameter K_c as a function of the bare coupling. This enables us to remove O(a) scaling violation from physical observables in future numerical simulation in the wide range of beta. Our analysis with a perturbatively modified improvement condition for c_SW suggests that finite volume effects in c_SW are not large on the 8^3x16 lattice. We investigate N_f dependence of c_SW by additional simulations for N_f=4, 2 and 0 at beta=9.6. As a preparatory step for this study, we also determine c_SW in two-flavor QCD at beta=5.2. At this beta, several groups carried out large-scale calculations of the hadron spectrum, while no systematic determination of c_SW has been performed.
We present an exact dynamical QCD simulation algorithm for the $O(a)$-improved Wilson fermion with odd number of flavors. Our algorithm is an extension of the non-Hermitian polynomials HMC algorithm proposed by Takaishi and de Forcrand previously. In our algorithm, the systematic errors caused by the polynomial approximation of the inverse of Dirac operator is removed by a noisy-Metropolis test. For one flavor quark it is achieved by taking the square root of the correction matrix explicitly. We test our algorithm for the case of $N_f=1+1$ on a moderately large lattice size ($16^3times48$). The $N_f=2+1$ case is also investigated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا