No Arabic abstract
New observations with atmospheric neutrinos from the underground experiments SuperKamiokande, Soudan 2, and MACRO, together with earlier results from Kamiokande and IMB, are reviewed. The most recent observations reconfirm aspects of atmospheric flavor content and of zenith angle distributions which appear anomalous in the context of null oscillations. The anomalous trends, exhibited with high statistics in both sub-GeV and multi-GeV data of the SuperKamiokande water Cherenkov experiment, occur also in event samples recorded by the tracking calorimeters. The data are well-described by disappearence of nu_mu flavor neutrinos arising in oscillations with dominant two-state mixing, for which there exists a parameter region allowed by all experiments. In a new analysis by SuperKamiokande, nu_mu -> nu_tau is favored over nu_mu -> nu_s as the dominant oscillation based upon absence of oscillation suppression from matter effects at high energies. The possibility for sub-dominant nu_mu -> nu_e oscillations in atmospheric neutrinos which arises with three-flavor mixing, is reviewed, and intriguing possibilities for amplification of this oscillation by terrestrial matter-induced resonances are discussed. Developments and future measurements which will enhance our knowledge of the atmospheric neutrino fluxes are briefly noted.
The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.
Atmospheric neutrinos travel very long distances through earth matter. It is expected that the matter effects lead to significant changes in the neutrino survival and oscillation probabilities. Initial analysis of atmospheric neutrino data by the Super- Kamiokande collaboration is done using the vacuum oscillation hypothesis, which provided a good fit to the data. In this work, we did a study to differentiate the effects of vacuum oscillations and matter modified oscillations in the atmospheric neutrino data. We find that magnetized iron detector, ICAL at INO, can make a 3 sigma discrimination between vacuum oscillations and matter oscillations, for both normal and inverted hierarchies, in ten years.
We consider a solution of the atmospheric neutrino problem based on oscillations of muon neutrinos to sterile neutrinos: $ u_{mu}$ $leftrightarrow$ $ u_s$. The zenith angle ($Theta$) dependences of the neutrino and upward-going muon fluxes in presence of these oscillations are studied. The dependences have characteristic form with two dips: at $cos Theta = -0.6 div -0.2$ and $cos Theta = -1.0 div -0.8$. The latter dip is due to parametric resonance in oscillations of neutrinos which cross the core of the earth. A comparison of predictions with data from the MACRO, Baksan and Super-Kamiokande experiments is given.
New results from Super-Kamiokande, K2K and SNO not only have spurred on the interest in neutrino oscillation physics, but also have started to shift the interest from discovery to precision measurements. Future projects focusing on atmospheric neutrinos are reviewed in this context. Important contributions could be made in the precision determination of the oscillation parameters, in the observation of matter effects and in the determination of the neutrino mass hierarchy. Unfortunately, the probability that the projects discussed in this review will be running in the next ten years is rather small. The only project with a shorter time scale has not been funded.
This paper reports measurements of atmospheric neutrino and antineutrino interactions in the MINOS Far Detector, based on 2553 live-days (37.9 kton-years) of data. A total of 2072 candidate events are observed. These are separated into 905 contained-vertex muons and 466 neutrino-induced rock-muons, both produced by charged-current $ u_{mu}$ and $bar{ u}_{mu}$ interactions, and 701 contained-vertex showers, composed mainly of charged-current $ u_{e}$ and $bar{ u}_{e}$ interactions and neutral-current interactions. The curvature of muon tracks in the magnetic field of the MINOS Far Detector is used to select separate samples of $ u_{mu}$ and $bar{ u}_{mu}$ events. The observed ratio of $bar{ u}_{mu}$ to $ u_{mu}$ events is compared with the Monte Carlo simulation, giving a double ratio of $R^{data}_{bar{ u}/ u}/R^{MC}_{bar{ u}/ u} = 1.03 pm 0.08 (stat.) pm 0.08 (syst.)$. The $ u_{mu}$ and $bar{ u}_{mu}$ data are separated into bins of $L/E$ resolution, based on the reconstructed energy and direction of each event, and a maximum likelihood fit to the observed $L/E$ distributions is used to determine the atmospheric neutrino oscillation parameters. This fit returns 90% confidence limits of $|Delta m^{2}| = (1.9 pm 0.4) times 10^{-3} eV^{2}$ and $sin^{2} 2theta > 0.86$. The fit is extended to incorporate separate $ u_{mu}$ and $bar{ u}_{mu}$ oscillation parameters, returning 90% confidence limits of $|Delta m^{2}|-|Delta bar{m}^{2}| = 0.6^{+2.4}_{-0.8} times 10^{-3} eV^{2}$ on the difference between the squared-mass splittings for neutrinos and antineutrinos.