No Arabic abstract
New results from Super-Kamiokande, K2K and SNO not only have spurred on the interest in neutrino oscillation physics, but also have started to shift the interest from discovery to precision measurements. Future projects focusing on atmospheric neutrinos are reviewed in this context. Important contributions could be made in the precision determination of the oscillation parameters, in the observation of matter effects and in the determination of the neutrino mass hierarchy. Unfortunately, the probability that the projects discussed in this review will be running in the next ten years is rather small. The only project with a shorter time scale has not been funded.
A review is presented of several projects under development which aim to be third generation solar neutrino detectors.
Neutrino interactions recorded in a 5.1 fiducial kiloton-year exposure of the Soudan-2 iron tracking calorimeter are analyzed for effects of neutrino oscillations. Using contained single track and single shower events, we update our measurement of the atmospheric nu_mu/nu_e ratio-of-ratios and find R = 0.68 pm 0.11 pm 0.06. Assuming this anomalously low R-value is the result of nu_mu flavor disappearance via nu_mu to nu_tau oscillation, we select samples of charged current events which offer good resolution, event-by-event, for L/Enu reconstruction. Oscillation-weighted Monte Carlo events are fitted to these data events using a chisq function summed over bins of log(L/E_nu). The region allowed in the (sin^2 2theta, Delta m^2) plane at 90% CL is obtained using the Feldman-Cousins procedure: 0.46 < sin^2 2theta < 1.0 and 2.2x10^-4 < Delta m^2 < 2.2x10^-2 ev^2. A small but relatively energetic sample of partially contained nu_mu events has also been isolated. Their distribution in log(L/E_vis) relative to null oscillation Monte Carlo is compatible with nu_mu to nu_tau oscillation scenarios within the parameter region allowed by our contained events.
Future experiments focusing on atmospheric neutrino detection are reviewed. One of the main goals of these experiments is the detection of an unambiguous oscillation pattern (nu_mu reappearance) to prove the oscillation hypothesis. Further goals include the discrimination of nu_mu - nu_tau and nu_mu - nu_sterile oscillations, and the detection of a potential small nu_mu - nu_e contribution. The search for matter effects in three or more flavour oscillations can be used to constrain hybrid oscillation models and potentially measure the sign of delta m^2. The detectors and measurement techniques proposed to achieve these goals are described, and their physics reach is discussed.
New observations with atmospheric neutrinos from the underground experiments SuperKamiokande, Soudan 2, and MACRO, together with earlier results from Kamiokande and IMB, are reviewed. The most recent observations reconfirm aspects of atmospheric flavor content and of zenith angle distributions which appear anomalous in the context of null oscillations. The anomalous trends, exhibited with high statistics in both sub-GeV and multi-GeV data of the SuperKamiokande water Cherenkov experiment, occur also in event samples recorded by the tracking calorimeters. The data are well-described by disappearence of nu_mu flavor neutrinos arising in oscillations with dominant two-state mixing, for which there exists a parameter region allowed by all experiments. In a new analysis by SuperKamiokande, nu_mu -> nu_tau is favored over nu_mu -> nu_s as the dominant oscillation based upon absence of oscillation suppression from matter effects at high energies. The possibility for sub-dominant nu_mu -> nu_e oscillations in atmospheric neutrinos which arises with three-flavor mixing, is reviewed, and intriguing possibilities for amplification of this oscillation by terrestrial matter-induced resonances are discussed. Developments and future measurements which will enhance our knowledge of the atmospheric neutrino fluxes are briefly noted.
We present limits on sterile neutrino mixing using 4,438 live-days of atmospheric neutrino data from the Super-Kamiokande experiment. We search for fast oscillations driven by an eV$^2$-scale mass splitting and for oscillations into sterile neutrinos instead of tau neutrinos at the atmospheric mass splitting. When performing both these searches we assume that the sterile mass splitting is large, allowing $sin^2(Delta m^2 L/4E)$ to be approximated as $0.5$, and we assume that there is no mixing between electron neutrinos and sterile neutrinos ($|U_{e4}|^2 = 0$). No evidence of sterile oscillations is seen and we limit $|U_{mu4}|^2$ to less than 0.041 and $|U_{tau4}|^2$ to less than 0.18 for $Delta m^2 > 0.8$ eV$^2$ at the 90% C.L. in a 3+1 framework. The approximations that can be made with atmospheric neutrinos allow these limits to be easily applied to 3+N models, and we provide our results in a generic format to allow comparisons with other sterile neutrino models.