Do you want to publish a course? Click here

The Search for Supersymmetry at the Tevatron Collider

171   0   0.0 ( 0 )
 Added by Steve Mrenna
 Publication date 1997
  fields
and research's language is English
 Authors M. Carena




Ask ChatGPT about the research

We review the status of searches for Supersymmetry at the Tevatron Collider. After discussing the theoretical aspects relevant to the production and decay of supersymmetric particles at the Tevatron, we present the current results for Runs Ia and Ib as of the summer of 1997. To appear in the book Perspectives in Supersymmetry, edited by G.L. Kane, World Scientific.



rate research

Read More

141 - M. Carena 1998
A review of the status of searches for Supersymmetry at the Tevatron Collider as of the Summer of 1997. This is a new version of the previous review, substantially shortened to fit editorial guidelines, and significantly different to warrant a separate posting. To appear in Perspectives on Supersymmetry, ed. G.L. Kane (World Scientific, Singapore).
163 - Stephan Lammel 1998
These lectures contain an introduction to the search for supersymmetry at hadron colliders. The Tevatron is one of high-energy physics most sophisticated tools. The high center-of-mass energy of its proton-antiproton collisions makes it an ideal place to search for physics beyond the Standard Model, such as supersymmetry. Two experiments, CDF and DO, completed a long data taking period in summer of 1995, yielding over $100 p b^{-1}$ of proton-- antiproton interactions. The data recorded by the experiments are still being analysed. The lectures outline the strategies in the search for supersymmetry at the Tevatron and examine the major analyses in detail. Results obtained by the two experiments are included where available.
We present results from MiniMax (Fermilab T-864), a small test/experiment at the Tevatron designed to search for the production of disoriented chiral condensate (DCC) in $p - bar p$ collisions at $sqrt{s} = 1.8$ TeV in the forward direction, $sim 3.4 < eta < sim 4.2$. Data, consisting of $1.3 times 10^6$ events, are analyzed using the robust observables developed in an earlier paper. The results are consistent with generic, binomial-distribution partition of pions into charged and neutral species. Limits on DCC production in various models are presented.
124 - A. Guskov , R. El-Kholy 2018
Dark matter is an important component of the Standard model of cosmology but its nature is still unknown. One of the most common explanations is that dark matter consists of Weakly Interacting Massive Particles (WIMPs), supposed to be cold thermal relics of the Big Bang and to build up the galactic dark halos. Indirect search of dark matter could be performed via the study of an anomalous antiproton component in cosmic rays originating from possible annihilation of dark matter pairs in the galactic halo, on top of the standard astrophysical production. The measurements performed by the AMS-02 and PAMELA spectrometers have shown that limited knowledge of antiproton-production cross sections in $pp$, $pD$, $pHe$ and $HeHe$ collisions is one of the main uncertainties of background subtraction. The planned SPD experiment at the NICA collider could provide a precision measurement of antiproton yield in wide kinematic range in $pp$ and $pD$ collisions at the energy scale from the threshold to $sqrt{s}=26$ GeV/$c$.
We make a Monte Carlo study on compositeness of first generation quarks and leptons using the Drell-Yan distribution in the high dielectron mass region at the Tevatron and LHC energies. The current experimental lower limits on the compositeness scale, Lambda, vary from 2.5 to 6.1 TeV. In the present analysis, we assume that there will be no deviation of the dielectron mass spectrum from Standard Model prediction at center of mass energy 2 TeV (Tevatron) and 14 TeV (LHC). We then find that in the LL, RR, RL and LR chirality channels of the quark-electron currents, it is possible to extend the lower limits on Lambda (at 95% {CL}) to a range of 6 to 10 TeV for 2 fb^{-1} and 9 to 19 TeV for 30 fb^{-1} of integrated luminosity at Tevatron. At LHC, the corresponding limits extend to a range of 16 to 25 TeV for 10 fb^{-1} and 20 to 36 TeV for 100 fb^{-1} of integrated luminosity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا