Do you want to publish a course? Click here

Superposition of a static perfect fluid and a radial elecric field

124   0   0.0 ( 0 )
 Publication date 1996
  fields Physics
and research's language is English




Ask ChatGPT about the research

We obtain a two-parameter set of solutions, which represents a spherically symmetric space-time with a superposition of a neutral fluid and an electric field. The electromagnetic four-potential of this Einstein-Maxwell space-time is taken in the form A=(q/n)(r^n)dt, when n=/0 and A=q*ln(r)dt, when n=0 (where q and n are arbitrary constants)



rate research

Read More

The interpretation of some electrovacuum spacetimes in terms of counterrotating perfect fluid discs is presented. The interpretation is mades by means of an inverse problem approach used to obtain disc sources of known static solutions of the Einstein-Maxwell equations. In order to do such interpretation, a detailed study is presented of the counterrotating model (CRM) for generic electrovacuum static axially symmetric relativistic thin discs with nonzero radial pressure. Four simple families of models of counterrotating charged discs based on Chazy-Curzon-type, Zipoy-Voorhees-type, Bonnor-Sackfield-type, and charged and magnetized Darmois electrovacuum metrics are considered where we obtain some discs with a CRM well behaved.
In this work we study static perfect fluid stars in 2+1 dimensions with an exterior BTZ spacetime. We found the general expression for the metric coefficients as a function of the density and pressure of the fluid. We found the conditions to have regularity at the origin throughout the analysis of a set of linearly independent invariants. We also obtain an exact solution of the Einstein equations, with the corresponding equation of state $p=p(rho)$, which is regular at the origin.
We apply a new global dynamical systems formulation to flat Robertson-Walker cosmologies with a massless and massive Yang-Mills field and a perfect-fluid with linear equation of state as the matter sources. This allows us to give proofs concerning the global dynamics of the models including asymptotic source-dominance towards the past and future time directions. For the pure massless Yang-Mills field, we also contextualize well-known explicit solutions in a global (compact) state space picture.
The present work investigates the gravitational collapse of a perfect fluid in $f(R)$ gravity models. For a general $f(R)$ theory, it is shown analytically that a collapse is quite possible. The singularity formed as a result of the collapse is found to be a curvature singularity of shell focusing type. The possibility of the formation of an apparent horizon hiding the central singularity depends on the initial conditions.
We investigate black holes formed by static perfect fluid with $p=-rho/3$. These represent the black holes in $S_3$ and $H_3$ spatial geometries. There are three classes of black-hole solutions, two $S_3$ types and one $H_3$ type. The interesting solution is the one of $S_3$ type which possesses two singularities. The one is at the north pole behind the horizon, and the other is naked at the south pole. The observers, however, are free from falling to the naked singularity. There are also nonstatic cosmological solutions in $S_3$ and $H_3$, and a singular static solution in $H_3$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا