Do you want to publish a course? Click here

Junction conditions in General Relativity with spin sources

127   0   0.0 ( 0 )
 Added by Alex Giacomini
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The junction conditions for General Relativity in the presence of domain walls with intrinsic spin are derived in three and higher dimensions. A stress tensor and a spin current can be defined just by requiring the existence of a well defined volume element instead of an induced metric, so as to allow for generic torsion sources. In general, when the torsion is localized on the domain wall, it is necessary to relax the continuity of the tangential components of the vielbein. In fact it is found that the spin current is proportional to the jump in the vielbein and the stress-energy tensor is proportional to the jump in the spin connection. The consistency of the junction conditions implies a constraint between the direction of flow of energy and the orientation of the spin. As an application, we derive the circularly symmetric solutions for both the rotating string with tension and the spinning dust string in three dimensions. The rotating string with tension generates a rotating truncated cone outside and a flat space-time with inevitable frame dragging inside. In the case of a string made of spinning dust, in opposition to the previous case no frame dragging is present inside, so that in this sense, the dragging effect can be shielded by considering spinning instead of rotating sources. Both solutions are consistently lifted as cylinders in the four-dimensional case.



rate research

Read More

Varying the gravitational Lagrangian produces a boundary contribution that has various physical applications. It determines the right boundary terms to be added to the action once boundary conditions are specified, and defines the symplectic structure of covariant phase space methods. We study general boundary variations using tetrads instead of the metric. This choice streamlines many calculations, especially in the case of null hypersurfaces with arbitrary coordinates, where we show that the spin-1 momentum coincides with the rotational 1-form of isolated horizons. The additional gauge symmetry of internal Lorentz transformations leaves however an imprint: the boundary variation differs from the metric one by an exact 3-form. On the one hand, this difference helps in the variational principle: gluing hypersurfaces to determine the action boundary terms for given boundary conditions is simpler, including the most general case of non-orthogonal corners. On the other hand, it affects the construction of Hamiltonian surface charges with covariant phase space methods, which end up being generically different from the metric ones, in both first and second-order formalisms. This situation is treated in the literature gauge-fixing the tetrad to be adapted to the hypersurface or introducing a fine-tuned internal Lorentz transformation depending non-linearly on the fields. We point out and explore the alternative approach of dressing the bare symplectic potential to recover the value of all metric charges, and not just for isometries. Surface charges can also be constructed using a cohomological prescription: in this case we find that the exact 3-form mismatch plays no role, and tetrad and metric charges are equal. This prescription leads however to different charges whether one uses a first-order or second-order Lagrangian, and only for isometries one recovers the same charges.
We study the spontaneously induced general relativity (GR) from the scalar-tensor gravity. We demonstrate by numerical methods that a novel inner core can be connected to the Schwarzschild exterior with cosmological constants and any sectional curvature. Deriving an analytic core metric for a general exterior, we show that all the nontrivial features of the core, including the locally holographic entropy packing, are universal for the general exterior in static spacetimes. We also investigate whether the f(R) gravity can accommodate the nontrivial core.
69 - Luis Aviles , Hideki Maeda , 2019
We analyze junction conditions at a null or non-null hypersurface $Sigma$ in a large class of scalar-tensor theories in arbitrary $n(ge 3)$ dimensions. After showing that the metric and a scalar field must be continuous at $Sigma$ as the first junction conditions, we derive the second junctions conditions from the Einstein equations and the equation of motion for the scalar field. Subsequently, we study $C^1$ regular matching conditions as well as vacuum conditions at $Sigma$ both in the Jordan and Einstein frames. Our result suggests that the following configurations may be possible; (i) a vacuum thin-shell at null $Sigma$ in the Einstein frame, (ii) a vacuum thin-shell at null and non-null $Sigma$ in the Jordan frame, and (iii) a non-vacuum $C^1$ regular matching at null $Sigma$ in the Jordan frame. Lastly, we clarify the relations between the conditions for $C^1$ regularity and also for vacuum $Sigma$ in the Jordan and Einstein frames.
General Relativity can be reformulated as a diffeomorphism invariant gauge theory of the Lorentz group, with Lagrangian of the type $f(Fwedge F)$, where $F$ is the curvature 2-form of the spin connection. A theory from this class with a generic $f$ is known to propagate eight degrees of freedom: a massless graviton, a massive graviton and a scalar. General Relativity in this formalism avoids extra degrees of freedom because the function $f$ is special and leads to the appearance of six extra primary constraints on the phase space variables. Our main new result is that there are other theories of the type $f(Fwedge F)$ that lead to six extra primary constraints. However, only in the case of GR the dynamics is such that these six primary constraints get supplemented by six secondary constraints, which gives the end result of two propagating degrees of freedom. This is how uniqueness of GR manifests itself in this ``pure spin connection formalism. The other theories we discover are shown to give examples of irregular dynamical systems. At the linear level around (anti-)de Sitter space they have two degrees of freedom, as General Relativity, with the extra ones manifesting themselves only non-linearly.
We generalize the classical junction conditions for constructing impulsive gravitational waves by the Penrose cut and paste method. Specifically, we study nonexpanding impulses which propagate in spaces of constant curvature with any value of the cosmological constant (that is Minkowski, de Sitter, or anti-de Sitter universes) when additional off-diagonal metric components are present. Such components encode a possible angular momentum of the ultra-relativistic source of the impulsive wave - the so called gyraton. We explicitly derive and analyze a specific transformation that relates the distributional form of the metric to a new form which is (Lipschitz) continuous. Such a transformation automatically implies an extended version of the Penrose junction conditions. It turns out that the conditions for identifying points of the background spacetime across the impulse are the same as in the original Penrose cut and paste construction, but their derivatives now directly represent the influence of the gyraton on the axial motion of test particles. Our results apply both for vacuum and nonvacuum solutions of Einsteins field equations, and can also be extended to other theories of gravity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا