No Arabic abstract
We report on the first joint search for gravitational waves by the TAMA and LIGO collaborations. We looked for millisecond-duration unmodelled gravitational-wave bursts in 473 hr of coincident data collected during early 2003. No candidate signals were found. We set an upper limit of 0.12 events per day on the rate of detectable gravitational-wave bursts, at 90% confidence level. From simulations, we estimate that our detector network was sensitive to bursts with root-sum-square strain amplitude above approximately 1-3x10^{-19} Hz^{-1/2} in the frequency band 700-2000 Hz. We describe the details of this collaborative search, with particular emphasis on its advantages and disadvantages compared to searches by LIGO and TAMA separately using the same data. Benefits include a lower background and longer observation time, at some cost in sensitivity and bandwidth. We also demonstrate techniques for performing coincidence searches with a heterogeneous network of detectors with different noise spectra and orientations. These techniques include using coordinated signal injections to estimate the network sensitivity, and tuning the analysis to maximize the sensitivity and the livetime, subject to constraints on the background.
We describe the plans for a joint search for unmodelled gravitational wave bursts being carried out by the LIGO and TAMA collaborations using data collected during February-April 2003. We take a conservative approach to detection, requiring candidate gravitational wave bursts to be seen in coincidence by all four interferometers. We focus on some of the complications of performing this coincidence analysis, in particular the effects of the different alignments and noise spectra of the interferometers.
Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the universe. We carry out a search for the stochastic background with the latest data from LIGO and Virgo. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of Omega_GW(f)=Omega_alpha*(f/f_ref)^alpha, we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5-1726 Hz. In the frequency band of 41.5-169.25 Hz for a spectral index of alpha=0, we constrain the energy density of the stochastic background to be Omega_GW(f)<5.6x10^-6. For the 600-1000 Hz band, Omega_GW(f)<0.14*(f/900 Hz)^3, a factor of 2.5 lower than the best previously reported upper limits. We find Omega_GW(f)<1.8x10^-4 using a spectral index of zero for 170-600 Hz and Omega_GW(f)<1.0*(f/1300 Hz)^3 for 1000-1726 Hz, bands in which no previous direct limits have been placed. The limits in these four bands are the lowest direct measurements to date on the stochastic background. We discuss the implications of these results in light of the recent claim by the BICEP2 experiment of the possible evidence for inflationary gravitational waves.
Data collected by the GEO600 and LIGO interferometric gravitational wave detectors during their first observational science run were searched for continuous gravitational waves from the pulsar J1939+2134 at twice its rotation frequency. Two independent analysis methods were used and are demonstrated in this paper: a frequency domain method and a time domain method. Both achieve consistent null results, placing new upper limits on the strength of the pulsars gravitational wave emission. A model emission mechanism is used to interpret the limits as a constraint on the pulsars equatorial ellipticity.
Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension $Gmu$ below $10^{-8}$ in some regions of the cosmic string parameter space.
A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of $Omega_{rm GW}(f) = Omega_3 (f/900 mathrm{Hz})^3$, of $Omega_3 < 0.33$, assuming a value of the Hubble parameter of $h_{100}=0.72$. These new limits are a factor of seven better than the previous best in this frequency band.