Do you want to publish a course? Click here

On multiple connectedness of regions visible due to multiple diffuse reflections

136   0   0.0 ( 0 )
 Publication date 2003
and research's language is English




Ask ChatGPT about the research

It is known that the region $V(s)$ of a simple polygon $P$, directly visible (illuminable) from an internal point $s$, is simply connected. Aronov et al. cite{addpp981} established that the region $V_1(s)$ of a simple polygon visible from an internal point $s$ due to at most one diffuse reflection on the boundary of the polygon $P$, is also simply connected. In this paper we establish that the region $V_2(s)$, visible from $s$ due to at most two diffuse reflections may be multiply connected; we demonstrate the construction of an $n$-sided simple polygon with a point $s$ inside it so that and the region of $P$ visible from $s$ after at most two diffuse reflections is multiple connected.



rate research

Read More

We study Bragg scattering at 1D atomic lattices. Cold atoms are confined by optical dipole forces at the antinodes of a standing wave generated inside a laser-driven cavity. The atoms arrange themselves into an array of lens-shaped layers located at the antinodes of the standing wave. Light incident on this array at a well-defined angle is partially Bragg-reflected. We measure reflectivities as high as 30%. In contrast to a previous experiment devoted to the thin grating limit [S. Slama, et al., Phys. Rev. Lett. 94, 193901 (2005)] we now investigate the thick grating limit characterized by multiple reflections of the light beam between the atomic layers. In principle multiple reflections give rise to a photonic stop band, which manifests itself in the Bragg diffraction spectra as asymmetries and minima due to destructive interference between different reflection paths. We show that close to resonance however disorder favors diffuse scattering, hinders coherent multiple scattering and impedes the characteristic suppression of spontaneous emission inside a photonic band gap.
240 - M. Houzet , P. Samuelsson 2010
We investigate theoretically charge transport in hybrid multiterminal junctions with superconducting leads kept at different voltages. It is found that multiple Andreev reflections involving several superconducting leads give rise to rich subharmonic gap structures in the current-voltage characteristics. The structures are evidenced numerically in junctions in the incoherent regime.
We study the problem of visibility in polyhedral terrains in the presence of multiple viewpoints. We consider a triangulated terrain with $m>1$ viewpoints (or guards) located on the terrain surface. A point on the terrain is considered emph{visible} if it has an unobstructed line of sight to at least one viewpoint. We study several natural and fundamental visibility structures: (1) the visibility map, which is a partition of the terrain into visible and invisible regions; (2) the emph{colored} visibility map, which is a partition of the terrain into regions whose points have exactly the same visible viewpoints; and (3) the Voronoi visibility map, which is a partition of the terrain into regions whose points have the same closest visible viewpoint. We study the complexity of each structure for both 1.5D and 2.5D terrains, and provide efficient algorithms to construct them. Our algorithm for the visibility map in 2.5D terrains improves on the only existing algorithm in this setting. To the best of our knowledge, the other structures have not been studied before.
Let $P$ be a set of $n$ points in general position in the plane. A subset $I$ of $P$ is called an emph{island} if there exists a convex set $C$ such that $I = P cap C$. In this paper we define the emph{generalized island Johnson graph} of $P$ as the graph whose vertex consists of all islands of $P$ of cardinality $k$, two of which are adjacent if their intersection consists of exactly $l$ elements. We show that for large enough values of $n$, this graph is connected, and give upper and lower bounds on its diameter.
Dilation and thermopower measurements on YbAgGe, a heavy-fermion antiferromagnet, clarify and refine the magnetic field-temperature (H-T) phase diagram and reveal a field-induced phase with T-linear resistivity. On the low-H side of this phase we find evidence for a first-order transition and suggest that YbAgGe at 4.5 T may be close to a quantum critical end point. On the high-H side our results are consistent with a second-order transition suppressed to a quantum critical point near 7.2 T. We discuss these results in light of global phase diagrams proposed for Kondo lattice systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا