Do you want to publish a course? Click here

Terrain visibility with multiple viewpoints

176   0   0.0 ( 0 )
 Added by Maria Saumell
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

We study the problem of visibility in polyhedral terrains in the presence of multiple viewpoints. We consider a triangulated terrain with $m>1$ viewpoints (or guards) located on the terrain surface. A point on the terrain is considered emph{visible} if it has an unobstructed line of sight to at least one viewpoint. We study several natural and fundamental visibility structures: (1) the visibility map, which is a partition of the terrain into visible and invisible regions; (2) the emph{colored} visibility map, which is a partition of the terrain into regions whose points have exactly the same visible viewpoints; and (3) the Voronoi visibility map, which is a partition of the terrain into regions whose points have the same closest visible viewpoint. We study the complexity of each structure for both 1.5D and 2.5D terrains, and provide efficient algorithms to construct them. Our algorithm for the visibility map in 2.5D terrains improves on the only existing algorithm in this setting. To the best of our knowledge, the other structures have not been studied before.



rate research

Read More

For a fixed virtual scene (=collection of simplices) S and given observer position p, how many elements of S are weakly visible (i.e. not fully occluded by others) from p? The present work explores the trade-off between query time and preprocessing space for these quantities in 2D: exactly, in the approximate deterministic, and in the probabilistic sense. We deduce the EXISTENCE of an O(m^2/n^2) space data structure for S that, given p and time O(log n), allows to approximate the ratio of occluded segments up to arbitrary constant absolute error; here m denotes the size of the Visibility Graph--which may be quadratic, but typically is just linear in the size n of the scene S. On the other hand, we present a data structure CONSTRUCTIBLE in O(n*log(n)+m^2*polylog(n)/k) preprocessing time and space with similar approximation properties and query time O(k*polylog n), where k<n is an arbitrary parameter. We describe an implementation of this approach and demonstrate the practical benefit of the parameter k to trade memory for query time in an empirical evaluation on three classes of benchmark scenes.
An important task when working with terrain models is computing viewsheds: the parts of the terrain visible from a given viewpoint. When the terrain is modeled as a polyhedral terrain, the viewshed is composed of the union of all the triangle parts that are visible from the viewpoint. The complexity of a viewshed can vary significantly, from constant to quadratic in the number of terrain vertices, depending on the terrain topography and the viewpoint position. In this work we study a new topographic attribute, the emph{prickliness}, that measures the number of local maxima in a terrain from all possible perspectives. We show that the prickliness effectively captures the potential of 2.5D terrains to have high complexity viewsheds, and we present near-optimal algorithms to compute the prickliness of 1.5D and 2.5D terrains. We also report on some experiments relating the prickliness of real word 2.5D terrains to the size of the terrains and to their viewshed complexity.
99 - Aaron Lowe 2020
An important problem in terrain analysis is modeling how water flows across a terrain creating floods by forming channels and filling depressions. In this paper we study a number of emph{flow-query} related problems: Given a terrain $Sigma$, represented as a triangulated $xy$-monotone surface with $n$ vertices, a rain distribution $R$ which may vary over time, determine how much water is flowing over a given edge as a function of time. We develop internal-memory as well as I/O-efficient algorithms for flow queries. This paper contains four main results: (i) We present an internal-memory algorithm that preprocesses $Sigma$ into a linear-size data structure that for a (possibly time varying) rain distribution $R$ can return the flow-rate functions of all edges of $Sigma$ in $O(rho k+|phi| log n)$ time, where $rho$ is the number of sinks in $Sigma$, $k$ is the number of times the rain distribution changes, and $|phi|$ is the total complexity of the flow-rate functions that have non-zero values; (ii) We also present an I/O-efficient algorithm for preprocessing $Sigma$ into a linear-size data structure so that for a rain distribution $R$, it can compute the flow-rate function of all edges using $O(text{Sort}(|phi|))$ I/Os and $O(|phi| log |phi|)$ internal computation time. (iii) $Sigma$ can be preprocessed into a linear-size data structure so that for a given rain distribution $R$, the flow-rate function of an edge $(q,r) in Sigma$ under the single-flow direction (SFD) model can be computed more efficiently. (iv) We present an algorithm for computing the two-dimensional channel along which water flows using Mannings equation; a widely used empirical equation that relates the flow-rate of water in an open channel to the geometry of the channel along with the height of water in the channel.
We consider the problem of routing on a network in the presence of line segment constraints (i.e., obstacles that edges in our network are not allowed to cross). Let $P$ be a set of $n$ points in the plane and let $S$ be a set of non-crossing line segments whose endpoints are in $P$. We present two deterministic 1-local $O(1)$-memory routing algorithms that are guaranteed to find a path of at most linear size between any pair of vertices of the emph{visibility graph} of $P$ with respect to a set of constraints $S$ (i.e., the algorithms never look beyond the direct neighbours of the current location and store only a constant amount of additional information). Contrary to {em all} existing deterministic local routing algorithms, our routing algorithms do not route on a plane subgraph of the visibility graph. Additionally, we provide lower bounds on the routing ratio of any deterministic local routing algorithm on the visibility graph.
We initiate the study of 2.5D box visibility representations (2.5D-BR) where vertices are mapped to 3D boxes having the bottom face in the plane $z=0$ and edges are unobstructed lines of sight parallel to the $x$- or $y$-axis. We prove that: $(i)$ Every complete bipartite graph admits a 2.5D-BR; $(ii)$ The complete graph $K_n$ admits a 2.5D-BR if and only if $n leq 19$; $(iii)$ Every graph with pathwidth at most $7$ admits a 2.5D-BR, which can be computed in linear time. We then turn our attention to 2.5D grid box representations (2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit square at integer coordinates. We show that an $n$-vertex graph that admits a 2.5D-GBR has at most $4n - 6 sqrt{n}$ edges and this bound is tight. Finally, we prove that deciding whether a given graph $G$ admits a 2.5D-GBR with a given footprint is NP-complete. The footprint of a 2.5D-BR $Gamma$ is the set of bottom faces of the boxes in $Gamma$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا