Do you want to publish a course? Click here

Answer Sets for Consistent Query Answering in Inconsistent Databases

108   0   0.0 ( 0 )
 Added by Jan Chomicki
 Publication date 2002
and research's language is English




Ask ChatGPT about the research

A relational database is inconsistent if it does not satisfy a given set of integrity constraints. Nevertheless, it is likely that most of the data in it is consistent with the constraints. In this paper we apply logic programming based on answer sets to the problem of retrieving consistent information from a possibly inconsistent database. Since consistent information persists from the original database to every of its minimal repairs, the approach is based on a specification of database repairs using disjunctive logic programs with exceptions, whose answer set semantics can be represented and computed by systems that implement stable model semantics. These programs allow us to declare persistence by defaults and repairing changes by exceptions. We concentrate mainly on logic programs for binary integrity constraints, among which we find most of the integrity constraints found in practice.



rate research

Read More

A consistent query answer in an inconsistent database is an answer obtained in every (minimal) repair. The repairs are obtained by resolving all conflicts in all possible ways. Often, however, the user is able to provide a preference on how conflicts should be resolved. We investigate here the framework of preferred consistent query answers, in which user preferences are used to narrow down the set of repairs to a set of preferred repairs. We axiomatize desirable properties of preferred repairs. We present three different families of preferred repairs and study their mutual relationships. Finally, we investigate the complexity of preferred repairing and computing preferred consistent query answers.
We develop a query answering system, where at the core of the work there is an idea of query answering by rewriting. For this purpose we extend the DL DL-Lite with the ability to support n-ary relations, obtaining the DL DLR-Lite, which is still polynomial in the size of the data. We devise a flexible way of mapping the conceptual level to the relational level, which provides the users an SQL-like query language over the conceptual schema. The rewriting technique adds value to conventional query answering techniques, allowing to formulate simpler queries, with the ability to infer additional information that was not stated explicitly in the user query. The formalization of the conceptual schema and the developed reasoning technique allow checking for consistency between the database and the conceptual schema, thus improving the trustiness of the information system.
We study here the impact of priorities on conflict resolution in inconsistent relational databases. We extend the framework of repairs and consistent query answers. We propose a set of postulates that an extended framework should satisfy and consider two instantiations of the framework: (locally preferred) l-repairs and (globally preferred) g-repairs. We study the relationships between them and the impact each notion of repair has on the computational complexity of repair checking and consistent query answers.
Querying graph structured data is a fundamental operation that enables important applications including knowledge graph search, social network analysis, and cyber-network security. However, the growing size of real-world data graphs poses severe challenges for graph databases to meet the response-time requirements of the applications. Planning the computational steps of query processing - Query Planning - is central to address these challenges. In this paper, we study the problem of learning to speedup query planning in graph databases towards the goal of improving the computational-efficiency of query processing via training queries.We present a Learning to Plan (L2P) framework that is applicable to a large class of query reasoners that follow the Threshold Algorithm (TA) approach. First, we define a generic search space over candidate query plans, and identify target search trajectories (query plans) corresponding to the training queries by performing an expensive search. Subsequently, we learn greedy search control knowledge to imitate the search behavior of the target query plans. We provide a concrete instantiation of our L2P framework for STAR, a state-of-the-art graph query reasoner. Our experiments on benchmark knowledge graphs including DBpedia, YAGO, and Freebase show that using the query plans generated by the learned search control knowledge, we can significantly improve the speed of STAR with negligible loss in accuracy.
159 - Yuanwei Zhao , Lan Huang , Bo Wang 2021
Ontology-based data integration has been one of the practical methodologies for heterogeneous legacy database integrated service construction. However, it is neither efficient nor economical to build the cross-domain ontology on top of the schemas of each legacy database for the specific integration application than to reuse the existed ontologies. Then the question lies in whether the existed ontology is compatible with the cross-domain queries and with all the legacy systems. It is highly needed an effective criteria to evaluate the compatibility as it limits the upbound quality of the integrated services. This paper studies the semantic similarity of schemas from the aspect of properties. It provides a set of in-depth criteria, namely coverage and flexibility to evaluate the compatibility among the queries, the schemas and the existing ontology. The weights of classes are extended to make precise compatibility computation. The use of such criteria in the practical project verifies the applicability of our method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا