Do you want to publish a course? Click here

Ferromagnetic- and Superconducting-like Behavior of Graphite

111   0   0.0 ( 0 )
 Added by Pablo D. Esquinazi
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have identified ferromagnetic- and superconducting-like magnetization hysteresis loops in highly oriented pyrolytic graphite samples below and above room temperature. We also found that both behaviors are very sensitive to low-temperature -- as compared to the sample synthesis temperature -- heat treatment. The possible contribution of magnetic impurities and why these do not appear to be the reason for the observed phenomena is discussed.



rate research

Read More

73 - Y. Kopelevich , S. Moehlecke , 2006
We review our recent work on magnetic properties of graphite and related carbon materials. The results demonstrate that a structural disorder, topological defects, as well as adsorbed foreign atoms can be responsible for the occurrence of both ferromagnetic and superconducting patches in graphitic structures.
Magnetotransport measurements performed on several well-characterized highly oriented pyrolitic graphite and single crystalline Kish graphite samples reveal a reentrant metallic behavior in the basal-plane resistance at high magnetic fields, when only the lowest Landau levels are occupied. The results suggest that the quantum Hall effect and Landau-level-quantization-induced superconducting correlations are relevant to understand the metallic-like state(s) in graphite in the quantum limit.
Measurements of the basal-plane resistivity rho_a(T,H) performed on highly oriented pyrolitic graphite, with magnetic field H parallel to the c-axis in the temperature interval 2 - 300 K and fields up to 8 T, provide evidence for the occurrence of both field - induced and zero-field superconducting instabilities. Additionally, magnetization M(T,H) measurements suggest the occurrence of Fermi surface instabilities which compete with the superconducting correlations.
Multiple superconducting order parameters are extremely rare. Here we show that a very small pressure can induce this phenomenon in the recently discovered heavy fermion superconductor UTe2. This nearly ferromagnetic system shows several intriguing phenomena, including an extraordinary reinforcement of superconductivity in very strong magnetic fields. We find that pressure can tune the system to a more correlated state and probable magnetic order. The superconducting critical temperature is strongly enhanced, reaching almost 3K, a new record for Ce- and U-based heavy fermion superconductors. Most spectacularly under pressure we find a transition within the superconducting state, putting UTe2 among the very rare systems having multiple superconducting phases. UTe2 under pressure is a treasure trove of several of the most fascinating phenomena in unconventional superconductivity and may well be a keystone in their understanding.
93 - Zhen Ma , Zhao-Yang Dong , Si Wu 2020
Quantum spin liquids (QSLs) are an exotic state of matter that is subject to extensive research. However, the relationship between the ubiquitous disorder and the QSL behaviors is still unclear. Here, by performing comparative experimental studies on two kagom{e}-lattice QSL candidates, Tm$_3$Sb$_3$Zn$_2$O$_{14}$ and Tm$_3$Sb$_3$Mg$_2$O$_{14}$, which are isostructural to each other but with strong and weak structural disorder, respectively, we show unambiguously that the disorder can induce spin-liquid-like features. In particular, both compounds show dominant antiferromagnetic interactions with a Curie-Weiss temperature of -17.4 and -28.7 K for Tm$_3$Sb$_3$Zn$_2$O$_{14}$ and Tm$_3$Sb$_3$Mg$_2$O$_{14}$, respectively, but remain disordered down to about 0.05 K. Specific heat results suggest the presence of gapless magnetic excitations characterized by a residual linear term. Magnetic excitation spectra obtained by inelastic neutron scattering (INS) at low temperatures display broad continua. All these observations are consistent with those of a QSL. However, we find in Tm$_3$Sb$_3$Zn$_2$O$_{14}$ which has strong disorder resulting from the random mixing of the magnetic Tm$^{3+}$ and nonmagnetic Zn$^{2+}$, that the low-energy magnetic excitations observed in the specific heat and INS measurements are substantially enhanced, compared to those of Tm$_3$Sb$_3$Mg$_2$O$_{14}$ which has much less disorder. We believe that the effective spins of the Tm$^{3+}$ ions in the Zn$^{2+}$/Mg$^{2+}$ sites give rise to the low-energy magnetic excitations, and the amount of the random occupancy determines the excitation strength. These results provide direct evidence of the mimicry of a QSL caused by disorder.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا