Do you want to publish a course? Click here

First-Principles Study Of The Structural Instabilities In Hexagonal Barium Titanate: Coupling Between The Soft Optical And The Acoustic Modes

109   0   0.0 ( 0 )
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hexagonal BaTiO_3 undergoes a structural phase transition to an orthorhombic C222_1 phase at T_0 = 222 K. The transition is driven by a soft optical mode with E_2u symmetry whose couplings force the appearance of a spontaneous E_2g strain (improper ferroelastic character). Staying within the same E_2u subspace, the system could in principle settle into a second (not observed) orthorhombic phase (Cmc2_1). We have carried out a first-principles investigation of these questions, studying the structure of the existing C222_1 and the virtual Cmc2_1 phases, and describing the spontaneous E_2g strain in accord with the experimental observations. In addition, we show that the occurrence of C222_1 instead of Cmc2_1 cannot be explained by the E_2u soft modes themselves and, therefore, must be related to their couplings with secondary order parameters. A more detailed analysis proves that the E_2g strains do not account for the experimental preference.



rate research

Read More

The lattice dynamics of the $rm YMnO_3$ magneto-electric compound has been investigated using density functional calculations, both in the ferroelectric and the paraelectric phases. The coherence between the computed and experimental data is very good in the low temperature phase. Using group theory, modes continuity and our calculations we were able to show that the phonons modes observed by Raman scattering at 1200K are only compatible with the ferroelectric $P6_{3} cm$ space group, thus supporting the idea of a ferroelectric to paraelectric phase transition at higher temperature. Finally we proposed a candidate for the phonon part of the observed electro-magnon. This mode, inactive both in Raman scattering and in Infra-Red, was shown to strongly couple to the Mn-Mn magnetic interactions.
The bandgap energy values for the ferroelectric BaTiO3-based solid solutions with isovalent substitution Ba1-x SrxTiO3, BaZrxTi1-xO3 and BaSnxTi1-xO3 were determined using diffuse reflectance spectra. While the corresponding unit cell volume follows Vegards law in accordance with the different ionic radii of the ionic substitutions, the bandgap values depict non-linear compositional dependences for all the solid solutions. The effect is considerably large for BaZrxTi1-xO3 and BaSnxTi1-xO3 solutions, depicting a bandgap linear compositional dependence up to x=0.6, for x>0.6 BaZrxTi1-xO3 compounds present much larger bandgap values than BaSnxTi1-xO3 counterparts. Electronic properties have been investigated through X-ray photoelectron spectroscopy in BaSnxTi1-xO3 compounds, indicating that the Sn 3d and Ti 2p core levels shift against the Ba 3d ones within the whole compositional range with the same energy trend as that observed for the optical bandgap. Since for Ba1-x SrxTiO3 compounds no major bandgap variation is observed, we conclude that the bandgap compositional dependences observed for BaSnxTi1-xO3 compounds and BaZrxTi1-xO3 ones are originated from the structural sensitivity of the O, Ti and Sn or Zr electronic bands involved in the bandgap transition of these compounds. With this work, we underline the reliability of the bandgap determined from diffuse reflectance spectrometry experiments, as a means to non-invasively evaluate the electronic properties of powder materials.
Structural phase transitions described by Mexican hat potentials should in principle exhibit aspects of Higgs and Goldstone physics. Here, we investigate the relationship between the phonons that soften at such structural phase transitions and the Higgs- and Goldstone-boson analogues associated with the crystallographic Mexican hat potential. We show that, with the exception of systems containing only one atom type, the usual Higgs and Goldstone modes are represented by a combination of several phonon modes, with the lowest energy phonons of the relevant symmetry having substantial contribution. Taking the hexagonal manganites as a model system, we identify these modes using Landau theory, and predict the temperature dependence of their frequencies using parameters obtained from density functional theory. Separately, we calculate the additional temperature dependence of all phonon mode frequencies arising from thermal expansion within the quasi-harmonic approximation. We predict that Higgs-mode softening will dominate the low-frequency vibrational spectrum of InMnO$_3$ between zero kelvin and room-temperature, whereas the behavior of ErMnO$_3$ will be dominated by lattice expansion effects. We present temperature-dependent Raman scattering data that support our predictions, in particular confirming the existence of the Higgs mode in InMnO$_3$.
Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density functional theory. The bonding of graphene to Al, Ag, Cu, Au and Pt(111) surfaces is so weak that its unique ultrarelativistic electronic structure is preserved. The interaction does, however, lead to a charge transfer that shifts the Fermi level by up to 0.5 eV with respect to the conical points. The crossover from p-type to n-type doping occurs for a metal with a work function ~5.4 eV, a value much larger than the work function of free-standing graphene, 4.5 eV. We develop a simple analytical model that describes the Fermi level shift in graphene in terms of the metal substrate work function. Graphene interacts with and binds more strongly to Co, Ni, Pd and Ti. This chemisorption involves hybridization between graphene $p_z$-states and metal d-states that opens a band gap in graphene. The graphene work function is as a result reduced considerably. In a current-in-plane device geometry this should lead to n-type doping of graphene.
Silver chloride is a material that has been investigated and used for many decades. Of particular interest are its optical properties, but only few fundamental theoretical studies exist. We present first-principles results for the optical properties of AgCl, obtained using time-dependent density functional theory and many-body perturbation theory. We show that optical properties exhibit strong excitonic effects, which are correctly captured only by solving the Bethe-Salpeter equation starting from quasiparticle self-consistent GW results. Numerical simulations are made feasible by using a model screening for the electron-hole interaction in a way that avoids the calculation of the static dielectric constant. A thorough analysis permits us to discuss localization in bright and dark excitons of silver chloride.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا