Do you want to publish a course? Click here

Magnetic field independence of the spin gap in YBa_2Cu_3O_{7-delta}

72   0   0.0 ( 0 )
 Added by P. Chris Hammel
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report, for magnetic fields of 0, 8.8, and 14.8 Tesla, measurements of the temperature dependent ^{63}Cu NMR spin lattice relaxation rate for near optimally doped YBa_2Cu_3O_{7-delta}, near and above T_c. In sharp contrast with previous work we find no magnetic field dependence. We discuss experimental issues arising in measurements of this required precision, and implications of the experiment regarding issues including the spin or pseudo gap.



rate research

Read More

158 - Hua Xu , Su Li , C. J. Lobb 2008
We study dynamic fluctuation effects of $YBa_2Cu_3O_{7-delta}$ thin films in zero field around $T_c$ by doing frequency-dependent microwave conductivity measurements at different powers. The length scales probed in the experiments are varied systematically allowing us to analyze data which are not affected by the finite thickness of the films, and to observe single-parameter scaling. DC current-voltage characteristics have also been measured to independently probe fluctuations in the same samples. The combination of DC and microwave measurements allows us to precisely determine critical parameters. Our results give a dynamical scaling exponent $z=1.55pm0.15$, which is consistent with model E-dynamics.
In zero magnetic field, the famous neutron spin resonance in the f-electron superconductor CeCoIn5 is similar to the recently discovered exciton peak in the non-superconducting CeB6. Magnetic field splits the resonance in CeCoIn5 into two components, indicating that it is a doublet. Here we employ inelastic neutron scattering (INS) to scrutinize the field dependence of spin fluctuations in CeB6. The exciton shows a markedly different behavior without any field splitting. Instead, we observe a second field-induced magnon whose energy increases with field. At the ferromagnetic zone center, however, we find only a single mode with a non-monotonic field dependence. At low fields, it is initially suppressed to zero together with the antiferromagnetic order parameter, but then reappears at higher fields inside the hidden-order phase, following the energy of an electron spin resonance (ESR). This is a unique example of a ferromagnetic resonance in a heavy-fermion metal seen by both ESR and INS consistently over a broad range of magnetic fields.
104 - B. Lake 1999
A notable aspect of high-temperature superconductivity in the copper oxides is the unconventional nature of the underlying paired-electron state. A direct manifestation of the unconventional state is a pairing energy - that is, the energy required to remove one electron from the superconductor - that varies (between zero and a maximum value) as a function of momentum or wavevector: the pairing energy for conventional superconductors is wavevector-independent. The wavefunction describing the superconducting state will include not only the pairing of charges, but also of the spins of the paired charges. Each pair is usually in the form of a spin singlet, so there will also be a pairing energy associated with transforming the spin singlet into the higher energy spin triplet form without necessarily unbinding the charges. Here we use inelastic neutron scattering to determine the wavevector-dependence of spin pairing in La_{2-x}Sr_xCuO_4, the simplest high-temperature superconductor. We find that the spin pairing energy (or spin gap) is wavevector independent, even though superconductivity significantly alters the wavevector dependence of the spin fluctuations at higher energies.
We present low-temperature thermal conductivity measurements on the cuprate Tl_2Ba_2CuO_{6+delta} throughout the overdoped regime. In the T -> 0 limit, the thermal conductivity due to d-wave nodal quasiparticles provides a bulk measurement of the superconducting gap, Delta. We find Delta to decrease with increasing doping, with a magnitude consistent with spectroscopic measurements (photoemission and tunneling). This argues for a pure and simple d-wave superconducting state in the overdoped region of the phase diagram, which appears to extend into the underdoped regime down to a hole concentration of 0.1 hole/Cu. As hole concentration is decreased, the gap-to-Tc ratio increases, showing that the suppression of the superconducting transition temperature Tc (relative to the gap) begins in the overdoped regime.
We study the critical current I_c dependence on applied magnetic field H for multifacet YBa_2Cu_3O_{7-delta}-Au-Nb ramp-type zigzag Josephson junctions. For many experiments one would like to apply a homogeneous field in the junction plane. However, even tiny misalignments can cause drastic deviations from homogeneity. We show this explicitly by measuring and analyzing I_c vs. H for an 8 facet junction, forming an array of 4times(0-pi)-segments. The ramp angle is theta_r=8^circ. The facet width is 10,mum. H is applied under different angles theta relative to the substrate plane and different angles phi relative to the in-plane orientation of the zigzags. We find that a homogeneous flux distribution is only achieved for an angle theta_happrox 1^circ - 2^circ and that even a small misalignment sim 0.1^circ relative to theta_h can cause a substantial inhomogeneity of the flux density inside the junction, drastically altering its I_c vs. H interference pattern. We also show, that there is a dead angle theta^*_d relative to theta_h of similar magnitude, where the average flux density completely vanishes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا