Do you want to publish a course? Click here

Quantum transport in $ u=2/3$ spin-singlet quantum Hall edges

105   0   0.0 ( 0 )
 Added by Kenichiro Imura
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tunneling conductance $G(T)$ through a constricted point contact is studied for the $ u=2/3$ spin-singlet edges. Including spin-flip tunneling, Zeeman splitting and random magnetic impurities, we discuss the various crossovers of $G(T)$ as a function of the temperature $T$. The behavior of $G(T)$ is found to be quite different for spin-singlet and spin-polarized cases, and hence $G(T)$ is expected to serve as an experimental probe for the polarized-unpolarized transition at $ u=2/3$.



rate research

Read More

304 - K. Imura , N. Nagaosa 1996
We study the effect of backward scatterings in the tunneling at a point contact between the edges of a second level hierarchical fractional quantum Hall states. A universal scaling dimension of the tunneling conductance is obtained only when both of the edge channels propagate in the same direction. It is shown that the quasiparticle tunneling picture and the electron tunneling picture give different scaling behaviors of the conductances, which indicates the existence of a crossover between the two pictures. When the direction of two edge-channels are opposite, e.g. in the case of MacDonalds edge construction for the $ u=2/3$ state, the phase diagram is divided into two domains giving different temperature dependence of the conductance.
We measured the magnetoresistance of bilayer quantum Hall (QH) effects at the fractional filling factor $ u =2/3$ by changing the total electron density and the density difference between two layers. Three different QH states were separated by two types of phase transition: One is the spin transition and the other is the pseudospin transition. In addition, two different hystereses were detected, one of which is specific to bilayer systems. The phase transitions and the hystereses are described well by a composite fermion model extended to a bilayer system.
A two-dimensional (2D) topological insulator (TI) exhibits the quantum spin Hall (QSH) effect, in which topologically protected spin-polarized conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported for the first time in an atomically thin material, monolayer WTe2. Electrical transport measurements on exfoliated samples and scanning tunneling spectroscopy on epitaxially grown monolayer islands signal the existence of edge modes with conductance approaching the quantized value. Here, we directly image the local conductivity of monolayer WTe2 devices using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, ruling out trivial conduction due to band bending or in-gap states, and is suppressed by magnetic field as expected. Interestingly, we observe additional conducting lines and rings within most samples which can be explained by edge states following boundaries between topologically trivial and non-trivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe2 or other air-sensitive 2D materials. At the same time, they reveal the robustness of the QSH channels and the potential to engineer and pattern them by chemical or mechanical means in the monolayer material platform.
We report on results of numerical studies of the spin polarization of the half filled second Landau level, which corresponds to the fractional quantum Hall state at filling factor $ u=5/2$. Our studies are performed using both exact diagonalization and Density Matrix Renormalization Group (DMRG) on the sphere. We find that for the Coulomb interaction the exact finite-system ground state is fully polarized, for shifts corresponding to both the Moore-Read Pfaffian state and its particle-hole conjugate (anti-Pfaffian). This result is found to be robust against small variations of the interaction. The low-energy excitation spectrum is consistent with spin-wave excitations of a fully-magnetized ferromagnet.
Time-reversal invariant two-dimensional topological insulators, often dubbed Quantum Spin Hall systems, possess helical edge modes whose ballistic transport is protected by physical symmetries. We argue that, though the time-reversal symmetry (TRS) of the bulk is needed for the existence of helicity, protection of the helical transport is actually provided by the spin conservation on the edges. This general statement is illustrated by specific examples. One example demonstrates the ballistic conductance in the setup where the TRS on the edge is broken. It shows that attributing the symmetry protection exclusively to the TRS is not entirely correct. Another example reveals weakness of the protection in the case where helical transport is governed by a space-fluctuating spin-orbit interaction. Our results demonstrate the fundamental importance of the spin conservation analysis for the identification of mechanisms which may (or may not) lead to suppression of the ballistic helical transport.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا