We measured the magnetoresistance of bilayer quantum Hall (QH) effects at the fractional filling factor $ u =2/3$ by changing the total electron density and the density difference between two layers. Three different QH states were separated by two types of phase transition: One is the spin transition and the other is the pseudospin transition. In addition, two different hystereses were detected, one of which is specific to bilayer systems. The phase transitions and the hystereses are described well by a composite fermion model extended to a bilayer system.
The Hall-plateau width and the activation energy were measured in the bilayer quantum Hall state at filling factor u=2, 1 and 2/3, by changing the total electron density and the density ratio in the two quantum wells. Their behavior are remarkably different from one to another. The u=1 state is found stable over all measured range of the density difference, while the u=2/3$ state is stable only around the balanced point. The u=2 state, on the other hand, shows a phase transition between these two types of the states as the electron density is changed.
Magnetotransport properties are investigated in the bilayer quantum Hall state at the total filling factor $ u=2$. We measured the activation energy elaborately as a function of the total electron density and the density difference between the two layers. Our experimental data demonstrate clearly the emergence of the canted antiferromagnetic (CAF) phase between the ferromagnetic phase and the spin-singlet phase. The stability of the CAF phase is discussed by the comparison between experimental results and theoretical calculations using a Hartree-Fock approximation and an exact diagonalization study. The data reveal also an intrinsic structure of the CAF phase divided into two regions according to the dominancy between the intralayer and interlayer correlations.
We have measured the Hall-plateau width and the activation energy of the bilayer quantum Hall (BLQH) states at the Landau-level filling factor $ u=1$ and 2 by tilting the sample and simultaneously changing the electron density in each quantum well. The phase transition between the commensurate and incommensurate states are confirmed at $ u =1$ and discovered at $ u =2$. In particular, three different $ u =2$ BLQH states are identified; the compound state, the coherent commensurate state, and the coherent incommensurate state.
We numerically study the quantum Hall effect (QHE) in bilayer graphene based on tight-binding model in the presence of disorder. Two distinct QHE regimes are identified in the full energy band separated by a critical region with non-quantized Hall Effect. The Hall conductivity around the band center (Dirac point) shows an anomalous quantization proportional to the valley degeneracy, but the $ u=0$ plateau is markedly absent, which is in agreement with experimental observation. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of extended levels toward the band center and higher plateaus disappear first. The central two plateaus around the band center are most robust against disorder scattering, which is separated by a small critical region in between near the Dirac point. The longitudinal conductance around the Dirac point is shown to be nearly a constant in a range of disorder strength, till the last two QHE plateaus completely collapse.
The quantum Hall system can be used to study many-body physics owing to its multiple internal electronic degrees of freedom and tunability. While quantum phase transitions have been studied intensively, research on the temperature-induced phase transitions of this system is limited. We measured the pure bulk conductivity of a quantum Hall antiferromagnetic state in bilayer graphene over a wide range of temperatures and revealed the two-step phase transition associated with the breaking of the long-range order and short-range antiferromagnetic order. Our findings are fundamental to understanding electron correlation in quantum Hall systems.