Do you want to publish a course? Click here

Extended Si defects

89   0   0.0 ( 0 )
 Added by Jeongnim Kim
 Publication date 1996
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform total energy calculations based on the tight-binding Hamiltonian scheme (i) to study the structural properties and energetics of the extended {311} defects depending upon their dimensions and interstitial concentrations and (ii) to find possible mechanisms of interstitial capture by and release from the {311} defects. The generalized orbital-based linear-scaling method implemented on Cray-T3D is used for supercell calculations of large scale systems containing more than 1000 Si atoms.



rate research

Read More

111 - S. R. Schofield 2003
Dimer vacancy (DV) defect complexes in the Si(001)2x1 surface were investigated using high-resolution scanning tunneling microscopy and first principles calculations. We find that under low bias filled-state tunneling conditions, isolated split-off dimers in these defect complexes are imaged as pairs of protrusions while the surrounding Si surface dimers appear as the usual bean-shaped protrusions. We attribute this to the formation of pi-bonds between the two atoms of the split-off dimer and second layer atoms, and present charge density plots to support this assignment. We observe a local brightness enhancement due to strain for different DV complexes and provide the first experimental confirmation of an earlier prediction that the 1+2-DV induces less surface strain than other DV complexes. Finally, we present a previously unreported triangular shaped split-off dimer defect complex that exists at SB-type step edges, and propose a structure for this defect involving a bound Si monomer.
Charge transport at the Dirac point in bilayer graphene exhibits two dramatically different transport states, insulating and metallic, that occur in apparently otherwise indistinguishable experimental samples. We demonstrate that the existence of these two transport states has its origin in an interplay between evanescent modes, that dominate charge transport near the Dirac point, and disordered configurations of extended defects in the form of partial dislocations. In a large ensemble of bilayer systems with randomly positioned partial dislocations, the conductivity distribution $P(sigma)$ is found to be strongly peaked at both the insulating and metallic limits. We argue that this distribution form, that occurs only at the Dirac point, lies at the heart of the observation of both metallic and insulating states in bilayer graphene.
We present investigations on single Ni/Si related color centers produced via ion implantation into single crystalline type IIa CVD diamond. Testing different ion dose combinations we show that there is an upper limit for both the Ni and the Si dose 10^12/cm^2 and 10^10/cm^2 resp.) due to creation of excess fluorescent background. We demonstrate creation of Ni/Si related centers showing emission in the spectral range between 767nm and 775nm and narrow line-widths of 2nm FWHM at room temperature. Measurements of the intensity auto-correlation functions prove single-photon emission. The investigated color centers can be coarsely divided into two groups: Drawing from photon statistics and the degree of polarization in excitation and emission we find that some color centers behave as two-level, single-dipole systems whereas other centers exhibit three levels and contributions from two orthogonal dipoles. In addition, some color centers feature stable and bright emission with saturation count rates up to 78kcounts/s whereas others show fluctuating count rates and three-level blinking.
We study by means of first-principles pseudopotential method the coordination defects in a-Si and a-Si:H, also in their formation and their evolution upon hydrogen interaction. An accurate analysis of the valence charge distribution and of the ``electron localization function (ELF) allows to resolve possible ambiguities in the bonding configuration, and in particular to identify clearly three-fold (T_3) and five-fold (T_5) coordinated defects. We found that electronic states in the gap can be associated to both kind of defects, and that in both cases the interaction with hydrogen can reduce the density of states in the gap.
Issues of Ge hut cluster nucleation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Data of HRTEM investigations of Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect multilayer films. Exploration of the photovoltaic effect in Si p--i--n-structures with Ge quantum dots allowed us to propose a new approach to designing of infrared detectors. First data on THz dynamical conductivity of Ge/Si(001) heterostructures in the temperature interval from 5 to 300 K and magnetic fields up to 6 T are reported.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا