Do you want to publish a course? Click here

Accurate quadratic-response approximation for the self-consistent pseudopotential of semiconductor nanostructures

193   0   0.0 ( 0 )
 Added by Bradley A. Foreman
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quadratic-response theory is shown to provide a conceptually simple but accurate approximation for the self-consistent one-electron potential of semiconductor nanostructures. Numerical examples are presented for GaAs/AlAs and InGaAs/InP (001) superlattices using the local-density approximation to density-functional theory and norm-conserving pseudopotentials without spin-orbit coupling. When the reference crystal is chosen to be the virtual-crystal average of the two bulk constituents, the absolute error in the quadratic-response potential for Gamma(15) valence electrons is about 2 meV for GaAs/AlAs and 5 meV for InGaAs/InP. Low-order multipole expansions of the electron density and potential response are shown to be accurate throughout a small neighborhood of each reciprocal lattice vector, thus providing a further simplification that is confirmed to be valid for slowly varying envelope functions. Although the linear response is about an order of magnitude larger than the quadratic response, the quadratic terms are important both quantitatively (if an accuracy of better than a few tens of meV is desired) and qualitatively (due to their different symmetry and long-range dipole effects).

rate research

Read More

214 - Bradley A. Foreman 2005
This paper examines the properties of the self-energy operator in lattice-matched semiconductor heterostructures, focusing on nonanalytic behavior at small values of the crystal momentum, which gives rise to long-range Coulomb potentials. A nonlinear response theory is developed for nonlocal spin-dependent perturbing potentials. The ionic pseudopotential of the heterostructure is treated as a perturbation of a bulk reference crystal, and the self-energy is derived to second order in the perturbation. If spin-orbit coupling is neglected outside the atomic cores, the problem can be analyzed as if the perturbation were a local spin scalar, since the nonlocal spin-dependent part of the pseudopotential merely renormalizes the results obtained from a local perturbation. The spin-dependent terms in the self-energy therefore fall into two classes: short-range potentials that are analytic in momentum space, and long-range nonanalytic terms that arise from the screened Coulomb potential multiplied by a spin-dependent vertex function. For an insulator at zero temperature, it is shown that the electronic charge induced by a given perturbation is exactly linearly proportional to the charge of the perturbing potential. These results are used in a subsequent paper to develop a first-principles effective-mass theory with generalized Rashba spin-orbit coupling.
129 - J. R. Trail , D. M. Bird 2009
Highly accurate experimental structure factors of silicon are available in the literature, and these provide the ideal test for any emph{ab initio} method for the construction of the all-electron charge density. In a recent paper [J. R. Trail and D. M. Bird, Phys. Rev. B {bf 60}, 7863 (1999)] a method has been developed for obtaining an accurate all-electron charge density from a first principles pseudopotential calculation by reconstructing the core region of an atom of choice. Here this method is applied to bulk silicon, and structure factors are derived and compared with experimental and Full-potential Linear Augmented Plane Wave results (FLAPW). We also compare with the result of assuming the core region is spherically symmetric, and with the result of constructing a charge density from the pseudo-valence density + frozen core electrons. Neither of these approximations provide accurate charge densities. The aspherical reconstruction is found to be as accurate as FLAPW results, and reproduces the residual error between the FLAPW and experimental results.
We present quasiparticle (QP) energies from fully self-consistent $GW$ (sc$GW$) calculations for a set of prototypical semiconductors and insulators within the framework of the projector-augmented wave methodology. To obtain converged results, both finite basis-set corrections and $k$-point corrections are included, and a simple procedure is suggested to deal with the singularity of the Coulomb kernel in the long-wavelength limit, the so called head correction. It is shown that the inclusion of the head corrections in the sc$GW$ calculations is critical to obtain accurate QP energies with a reasonable $k$-point set. We first validate our implementation by presenting detailed results for the selected case of diamond, and then we discuss the converged QP energies, in particular the band gaps, for a set of gapped compounds and compare them to single-shot $G_0W_0$, QP self-consistent $GW$, and previously available sc$GW$ results as well as experimental results.
At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depends on the approximation used for the exchange-correlation kernel in density functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the free energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe, we reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the $Gamma$X direction. In the case of SnTe, we describe the occurrence of a ferroelectric transition from the high temperature Fm$overline{3}$m structure to the low temperature R3m one.
We calculate the Overhauser frequency shifts in semiconductor nanostructures resulting from the hyperfine interaction between nonequilibrium electronic spins and nuclear spins. The frequency shifts depend on the electronic local density of states and spin polarization as well as the electronic and nuclear spin relaxation mechanisms. Unlike previous calculations, our method accounts for the electron confinement in low dimensional semiconductor nanostructures, resulting in both nuclear spin polarizations and Overhauser shifts that are strongly dependent on position. Our results explain previously puzzling measurements of Overhauser shifts in an Al$_x$Ga$_{1-x}$As parabolic quantum well by showing the connection between the electron spin lifetime and the frequency shifts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا