No Arabic abstract
Dynamical reaction-diffusion processes and meta-population models are standard modeling approaches for a wide variety of phenomena in which local quantities - such as density, potential and particles - diffuse and interact according to the physical laws. Here, we study the behavior of two basic reaction-diffusion processes ($B to A$ and $A+B to 2B$) defined on networks with heterogeneous topology and no limit on the nodes occupation number. We investigate the effect of network topology on the basic properties of the systems phase diagram and find that the network heterogeneity sustains the reaction activity even in the limit of a vanishing density of particles, eventually suppressing the critical point in density driven phase transitions, whereas phase transition and critical points, independent of the particle density, are not altered by topological fluctuations. This work lays out a theoretical and computational microscopic framework for the study of a wide range of realistic meta-populations models and agent-based models that include the complex features of real world networks.
We present new empirical evidence, based on millions of interactions on Twitter, confirming that human contacts scale with population sizes. We integrate such observations into a reaction-diffusion metapopulation framework providing an analytical expression for the global invasion threshold of a contagion process. Remarkably, the scaling of human contacts is found to facilitate the spreading dynamics. Our results show that the scaling properties of human interactions can significantly affect dynamical processes mediated by human contacts such as the spread of diseases, and ideas.
We generalize the reaction-diffusion model A + B -> 0 in order to study the impact of an excess of A (or B) at the reaction front. We provide an exact solution of the model, which shows that linear response breaks down: the average displacement of the reaction front grows as the square-root of the imbalance. We argue that this model provides a highly simplified but generic framework to understand the square-root impact of large orders in financial markets.
We study the decay process for the reaction-diffusion process of three species on the small-world network. The decay process is manipulated from the deterministic rate equation of three species in the reaction-diffusion system. The particle density and the global reaction rate on a two dimensional small-world network adding new random links is discussed numerically, and the global reaction rate before and after the crossover is also found by means of the Monte Carlo simulation. The time-dependent global reaction rate scales as a power law with the scaling exponent 0.66 at early time regime while it scales with -0.50 at long time regime, in all four cases of the added probability $p=0.2-0.8$. Especially, our result presented is compared with the numerical calculation of regular networks.
For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we show how the particle number and other quantities of interest can be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion problems.
We give an exact analytical results for diffusion with a power-law position dependent diffusion coefficient along the main channel (backbone) on a comb and grid comb structures. For the mean square displacement along the backbone of the comb we obtain behavior $langle x^2(t)ranglesim t^{1/(2-alpha)}$, where $alpha$ is the power-law exponent of the position dependent diffusion coefficient $D(x)sim |x|^{alpha}$. Depending on the value of $alpha$ we observe different regimes, from anomalous subdiffusion, superdiffusion, and hyperdiffusion. For the case of the fractal grid we observe the mean square displacement, which depends on the fractal dimension of the structure of the backbones, i.e., $langle x^2(t)ranglesim t^{(1+ u)/(2-alpha)}$, where $0< u<1$ is the fractal dimension of the backbones structure. The reduced probability distribution functions for both cases are obtained by help of the Fox $H$-functions.