No Arabic abstract
We systematically study and compare damage spreading at the sparse percolation (SP) limit for random boolean and threshold networks with perturbations that are independent of the network size $N$. This limit is relevant to information and damage propagation in many technological and natural networks. Using finite size scaling, we identify a new characteristic connectivity $K_s$, at which the average number of damaged nodes $bar d$, after a large number of dynamical updates, is independent of $N$. Based on marginal damage spreading, we determine the critical connectivity $K_c^{sparse}(N)$ for finite $N$ at the SP limit and show that it systematically deviates from $K_c$, established by the annealed approximation, even for large system sizes. Our findings can potentially explain the results recently obtained for gene regulatory networks and have important implications for the evolution of dynamical networks that solve specific computational or functional tasks.
We calculate analytically the critical connectivity $K_c$ of Random Threshold Networks (RTN) for homogeneous and inhomogeneous thresholds, and confirm the results by numerical simulations. We find a super-linear increase of $K_c$ with the (average) absolute threshold $|h|$, which approaches $K_c(|h|) sim h^2/(2ln{|h|})$ for large $|h|$, and show that this asymptotic scaling is universal for RTN with Poissonian distributed connectivity and threshold distributions with a variance that grows slower than $h^2$. Interestingly, we find that inhomogeneous distribution of thresholds leads to increased propagation of perturbations for sparsely connected networks, while for densely connected networks damage is reduced; the cross-over point yields a novel, characteristic connectivity $K_d$, that has no counterpart in Boolean networks. Last, local correlations between node thresholds and in-degree are introduced. Here, numerical simulations show that even weak (anti-)correlations can lead to a transition from ordered to chaotic dynamics, and vice versa. It is shown that the naive mean-field assumption typical for the annealed approximation leads to false predictions in this case, since correlations between thresholds and out-degree that emerge as a side-effect strongly modify damage propagation behavior.
We investigate the dynamics of two models of biological networks with purely suppressive interactions between the units; species interacting via niche competition and neurons via inhibitory synaptic coupling. In both of these cases, power-law scaling of the density of states with probability arises without any fine-tuning of the model parameters. These results argue against the increasingly popular notion that non-equilibrium living systems operate at special critical points, driven by there by evolution so as to enable adaptive processing of input data.
We study the infinite-temperature properties of an infinite sequence of random quantum spin chains using a real-space renormalization group approach, and demonstrate that they exhibit non-ergodic behavior at strong disorder. The analysis is conveniently implemented in terms of SU(2)$_k$ anyon chains that include the Ising and Potts chains as notable examples. Highly excited eigenstates of these systems exhibit properties usually associated with quantum critical ground states, leading us to dub them quantum critical glasses. We argue that random-bond Heisenberg chains self-thermalize and that the excited-state entanglement crosses over from volume-law to logarithmic scaling at a length scale that diverges in the Heisenberg limit $krightarrowinfty$. The excited state fixed points are generically distinct from their ground state counterparts, and represent novel non-equilibrium critical phases of matter.
Despite their apparent simplicity, random Boolean networks display a rich variety of dynamical behaviors. Much work has been focused on the properties and abundance of attractors. The topologies of random Boolean networks with one input per node can be seen as graphs of random maps. We introduce an approach to investigating random maps and finding analytical results for attractors in random Boolean networks with the corresponding topology. Approximating some other non-chaotic networks to be of this class, we apply the analytic results to them. For this approximation, we observe a strikingly good agreement on the numbers of attractors of various lengths. We also investigate observables related to the average number of attractors in relation to the typical number of attractors. Here, we find strong differences that highlight the difficulties in making direct comparisons between random Boolean networks and real systems. Furthermore, we demonstrate the power of our approach by deriving some results for random maps. These results include the distribution of the number of components in random maps, along with asymptotic expansions for cumulants up to the 4th order.
We use 3D numerical simulations to explore the phase diagram of driven flux line lattices in presence of weak random columnar disorder at finite temperature and high driving force. We show that the moving Bose glass phase exists in a large range of temperature, up to its melting into a moving vortex liquid. It is also remarkably stable upon increasing velocity : the dynamical transition to the correlated moving glass expected at a critical velocity is not found at any velocity accessible to our simulations. Furthermore, we show the existence of an effective static tin roof pinning potential in the direction transverse to motion, which originates from both the transverse periodicity of the moving lattice and the localization effect due to correlated disorder. Using a simple model of a single elastic line in such a periodic potential, we obtain a good description of the transverse field penetration at surfaces as a function of thickness in the moving Bose glass phase.