Do you want to publish a course? Click here

Size dependence of the photoinduced magnetism and long-range ordering in Prussian blue analog nanoparticles of rubidium cobalt hexacyanoferrate

192   0   0.0 ( 0 )
 Added by Mark W. Meisel
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanoparticles of rubidium cobalt hexacyanoferrate (Rb$_j$Co$_k$[Fe(CN)$_6$]$_l cdot n$H$_2$O) were synthesized using different concentrations of the polyvinylpyrrolidone (PVP) to produce four different batches of particles with characteristic diameters ranging from 3 to 13 nm. Upon illumination with white light at 5 K, the magnetization of these particles increases. The long-range ferrimagnetic ordering temperatures and the coercive fields evolve with nanoparticle size. At 2 K, particles with diameters less than approximately 10 nm provide a Curie-like magnetic signal.



rate research

Read More

We report electron transport measurements through nano-scale devices consisting of 1 to 3 Prussian blue analog (PBA) nanocrystals connected between two electrodes. We compare two types of cubic nanocrystals, CsCoFe (15 nm) and CsNiCr (6 nm), deposited on highly oriented pyrolytic graphite and contacted by conducting-AFM. The measured currents show an exponential dependence with the length of the PBA nano-device (up to 45 nm), with low decay factors b{eta}, in the range 0.11 - 0.18 nm-1 and 0.25 - 0.34 nm-1 for the CsCoFe and the CsNiCr nanocrystals, respectively. From the theoretical analysis of the current-voltage curve for the nano-scale device made of a single nanoparticle, we deduce that the electron transport is mediated by the localized d bands at around 0.5 eV from the electrode Fermi energy in the two cases. By comparison with previously reported ab-initio calculations, we tentatively identify the involved orbitals as the filled Fe(II)-t2g d band (HOMO) for CsCoFe and the half-filled Ni(II)-eg d band (SOMO) for CsNiCr. Conductance values measured for multi-nanoparticle nano-scale devices (2 and 3 nanocrystals between the electrodes) are consistent with a multi-step coherent tunneling in the off-resonance regime between adjacent PBAs, a simple model gives a strong coupling (around 0.1 - 0.25 eV) between the adjacent PBA nanocrystals, mediated by electrostatic interactions.
Cubic heterostructured (BA) particles of Prussian blue analogues, composed of a shell of ferromagnetic K_{0.3}Ni[Cr(CN)_6]_{0.8} cdot 1.3H_2O (A), Tc ~ 70 K, surrounding a bulk core of photoactive ferrimagnetic Rb_{0.4}Co[Fe(CN)_6]_{0.8} cdot 1.2H_2O (B), Tc ~20 K, have been studied. Below Tc ~ 70 K, these samples exhibit a persistent photoinduced decrease in low-field magnetization, and these results resemble data from other core-shell particles and analogous ABA heterostructured films. This net decrease suggests that the photoinduced lattice expansion in the B layer generates a strain-induced decrease in the magnetization of the A layer, similar to a pressure-induced decrease observed by others in a pure A-like material and by us in our BA cubes. Upon further examination, the data also reveal a significant portion of the A material whose superexchange, J, is perturbed by the photoinduced strain from the B constituent.
The structural and magnetic properties of the face-centered cubic double perovskite Ba2MnWO6 were investigated using neutron powder diffraction, DC-magnetometry, muon spin relaxation and inelastic neutron scattering. Ba2MnWO6 undergoes Type II long-range antiferromagnetic ordering at a Neel temperature of 8(1) K with a frustration index, f = 8. Inelastic neutron scattering was used to identify the magnetic coupling constants J1 and J2, which were found to equal -0.080 meV and -0.076 meV respectively. This indicated that both of the magnetic coupling constants were antiferromagnetic with similar magnitudes, which is in contrast to other known 3d metal double perovskites Ba2MWO6. Above the Neel temperature, muon spin relaxation measurements and inelastic neutron scattering techniques identify a short-range correlated magnetic state that is similar to that observed in the archetypical face-centered cubic lattice antiferromagnet MnO.
Epitaxial La2NiMnO6 thin films have been grown on (001)-oriented SrTiO3 using the PLD technique. The thin films are semiconducting and FM with a TC close to 270K, a coercive field of 920Oe, and a saturation magnetization of 5muB per f.u. TEM, conducted at RT, reveals a majority phase having I-centered structure with a=c=1.4asub and b=2asub along with a minority phase-domains having P-type structure (asub being the lattice parameter of the perovskite structure). A discusion on the presence of Ni/Mn long-range ordering, in light of recent literature on double perovskites La2NiMnO6 is presented.
Secondary batteries are important energy storage devices for a mobile equipment, an electric car, and a large-scale energy storage. Nevertheless, variation of the local electronic state of the battery materials in the charge (or oxidization) process are still unclear. Here, we investigated the local electronic state of cobalt-hexacyanoferrate (Na$_x$Co[Fe(CN)$_6$]$_{0.9}$), by means of resonant inelastic X-ray scattering (RIXS) with high energy resolution (~100 meV). The L-edge RIXS is one of the most powerful spectroscopic technique with element- and valence-selectivity. We found that the local electronic state around Co$^{2+}$ in the partially-charged Na$_{1.1}$Co$^{2+}$$_{0.5}$Co$^{3+}$$_{0.5}$[Fe$^{2+}$(CN)$_6$]$_{0.9}$ film (x = 1.1) is the same as that of the discharged Na$_{1.6}$Co$^{2+}$[Fe$^{2+}$(CN)$_6$]$_{0.9}$ film (x = 1.6) within the energy resolution, indicating that the local electronic state around Co$^{2+}$ is invariant against the partial oxidization. In addition, the local electronic state around the oxidized Co$^{3+}$ is essentially the same as that of the fully-charged film Co$^{3+}$[Fe$^{2+}$(CN)$_6$]$_{0.3}$[Fe$^{3+}$(CN)$_6$]$_{0.6}$ (x = 0.0) film. Such a strong localization of the oxidized Co$^{3+}$ state is advantageous for the reversibility of the redox process, since the localization reduces extra reaction within the materials and resultant deterioration.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا