No Arabic abstract
A nonperturbative theory is developed, aiming at an exact and efficient evaluation of a general quantum system interacting with arbitrary bath environment at any temperature and in the presence of arbitrary time-dependent external fields. An exact hierarchical equations of motion formalism is constructed on the basis of calculus-on-path-integral algorithm, via the auxiliary influence generating functionals related to the interaction bath correlation functions in a parametrization expansion form. The corresponding continued-fraction Greens functions formalism for quantum dissipation is also presented. Proposed further is the principle of residue correction, not just for truncating the infinite hierarchy, but also for incorporating the small residue dissipation that may arise from the practical difference between the true and the parametrized bath correlation functions. The final residue-corrected hierarchical equations of motion can therefore be used practically for the evaluation of arbitrary dissipative quantum systems.
By using worldline and diagrammatic quantum Monte Carlo techniques, matrix product state and a variational approach `a la Feynman, we investigate the equilibrium properties and relaxation features of a quantum system of $N$ spins antiferromagnetically interacting with each other, with strength $J$, and coupled to a common bath of bosonic oscillators, with strength $alpha$. We show that, in the Ohmic regime, a Beretzinski-Thouless-Kosterlitz quantum phase transition occurs. While for $J=0$ the critical value of $alpha$ decreases asymptotically with $1/N$ by increasing $N$, for nonvanishing $J$ it turns out to be practically independent on $N$, allowing to identify a finite range of values of $alpha$ where spin phase coherence is preserved also for large $N$. Then, by using matrix product state simulations, and the Mori formalism and the variational approach `a la Feynman jointly, we unveil the features of the relaxation, that, in particular, exhibits a non monotonic dependence on the temperature reminiscent of the Kondo effect. For the observed quantum phase transition we also establish a criterion analogous to that of the metal-insulator transition in solids.
We propose a quasi-particle description for the hierarchical equations of motion formalism for quantum dissipative dynamics systems. Not only it provides an alternative mathematical means to the existing formalism, the new protocol clarifies also explicitly the physical meanings of the auxiliary density operators and their relations to full statistics on solvation bath variables. Combining with the standard linear response theory, we construct further the hierarchical dynamics formalism for correlated spectrum of system--bath coherence. We evaluate the spectrum matrix for a demonstrative spin-boson system-bath model. While the individual diagonal element of the spectrum matrix describes the system or the solvation bath correlation, the off-diagonal elements characterize the correlation between system and bath solvation dynamics.
We propose a nonperturbative quantum dissipation theory, in term of hierarchical quantum master equation. It may be used with a great degree of confidence to various dynamics systems in condensed phases. The theoretical development is rooted in an improved semiclassical treatment of Drude bath, beyond the conventional high temperature approximations. It leads to the new theory a simple modification but important improvement over the conventional stochastic Liouville equation theory, without extra numerical cost. Its broad range of validity and applicability is extensively demonstrated with two--level electron transfer model systems, where the new theory can be considered as the modified Zusman equation. We also present a criterion, which depends only on the system--bath coupling strength, characteristic bath memory time, and temperature, to estimate the performance of the hierarchical quantum master equation.
The hierarchical equations of motion theory for Drude dissipation is optimized, with a convenient convergence criterion proposed in advance of numerical propagations. The theoretical construction is on basis of a Pad{e} spectrum decomposition that has been qualified to be the best sum-over-poles scheme for quantum distribution function. The resulting hierarchical dynamics under the {em apriori} convergence criterion are exemplified with a benchmark spin-boson system, and also the transient absorption and two-dimensional spectroscopy of a model exciton dimer system.
We propose a partial fraction decomposition scheme to the construction of hierarchical equations of motion theory for bosonic quantum dissipation systems. The expansion of Bose--Einstein function in this scheme shows similar properties as it applies for Fermi function. The performance of the resulting quantum dissipation theory is exemplified with spin--boson systems. In all cases we have tested the new theory performs much better, about an order of magnitude faster, than the best available conventional theory based on Matsubara spectral decomposition scheme.