Do you want to publish a course? Click here

Quantum Phase Transition of Many Interacting Spins Coupled to a Bosonic Bath: static and dynamical properties

112   0   0.0 ( 0 )
 Added by Loris Maria Cangemi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

By using worldline and diagrammatic quantum Monte Carlo techniques, matrix product state and a variational approach `a la Feynman, we investigate the equilibrium properties and relaxation features of a quantum system of $N$ spins antiferromagnetically interacting with each other, with strength $J$, and coupled to a common bath of bosonic oscillators, with strength $alpha$. We show that, in the Ohmic regime, a Beretzinski-Thouless-Kosterlitz quantum phase transition occurs. While for $J=0$ the critical value of $alpha$ decreases asymptotically with $1/N$ by increasing $N$, for nonvanishing $J$ it turns out to be practically independent on $N$, allowing to identify a finite range of values of $alpha$ where spin phase coherence is preserved also for large $N$. Then, by using matrix product state simulations, and the Mori formalism and the variational approach `a la Feynman jointly, we unveil the features of the relaxation, that, in particular, exhibits a non monotonic dependence on the temperature reminiscent of the Kondo effect. For the observed quantum phase transition we also establish a criterion analogous to that of the metal-insulator transition in solids.



rate research

Read More

We explore the possibility of dynamical quantum phase transitions (DQPTs) occurring during the temporal evolution of a quenched transverse field Ising chain coupled to a particle loss type of bath (local in Jordan-Wigner fermion space) using t
A quasi one--dimensional system of trapped, repulsively interacting atoms (e.g., an ion chain) exhibits a structural phase transition from a linear chain to a zigzag structure, tuned by reducing the transverse trap potential or increasing the particle density. Since it is a one dimensional transition, it takes place at zero temperature and therefore quantum fluctuations dominate. In [Fishman, et al., Phys. Rev. B 77, 064111 (2008)] it was shown that the system close to the linear-zigzag instability is described by a $phi^4$ model. We propose a mapping of the $phi^4$ field theory to the well known Ising chain in a transverse field, which exhibits a quantum critical point. Based on this mapping, we estimate the quantum critical point in terms of the system parameters. This estimate gives the critical value of the transverse trap frequency for which the quantum phase transition occurs, and which has a finite, measurable deviation from the critical point evaluated within the classical theory. A measurement is suggested for atomic systems which can probe the critical trap frequency at sufficiently low temperatures T. We focus in particular on a trapped ion system, and estimate the implied limitations on T and on the interparticle distance. We conclude that the experimental observation of the quantum critical behavior is in principle accessible.
We study a system-bath description in the strong coupling regime where it is not possible to derive a master equation for the reduced density matrix by a direct expansion in the system-bath coupling. A particular example is a bath with significant spectral weight at low frequencies. Through a unitary transformation it can be possible to find a more suitable small expansion parameter. Within such approach we construct a formally exact expansion of the master equation on the Keldysh contour. We consider a system diagonally coupled to a bosonic bath and expansion in terms of a non-diagonal hopping term. The lowest-order expansion is equivalent to the so-called $P(E)$-theory or non-interacting blip approximation (NIBA). The analysis of the higher-order contributions shows that there are two different classes of higher-order diagrams. We study how the convergence of this expansion depends on the form of the spectral function with significant weight at zero frequency.
It is shown that by fitting a Markovian quantum master equation to the numerical solution of the time-dependent Schrodinger equation of a system of two spin-1/2 particles interacting with a bath of up to 34 spin-1/2 particles, the former can describe the dynamics of the two-spin system rather well. The fitting procedure that yields this Markovian quantum master equation accounts for all non-Markovian effects in as much the general structure of this equation allows and yields a description that is incompatible with the Lindblad equation.
It is known that strong disorder in closed quantum systems leads to many-body localization (MBL), and that this quantum phase can be destroyed by coupling to an infinitely large Markovian environment. However, the stability of the MBL phase is less clear when the system and environment are of finite and comparable size. Here, we study the stability and eventual localization properties of a disordered Heisenberg spin chain coupled to a finite environment, and extensively explore the effects of environment disorder, geometry, initial state and system-bath coupling strength. Our numerical results indicate that in most cases, the system retains its localization properties despite the coupling to the finite environment, albeit to a reduced extent. However, in cases where the system and environment is strongly coupled in the ladder configuration, the eventual localization properties are highly dependent on the initial state, and could lead to either thermalization or localization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا