Do you want to publish a course? Click here

Dynamics of Vortex Core Switching in Ferromagnetic Nanodisks

172   0   0.0 ( 0 )
 Added by Byoung C. Choi
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dynamics of magnetic vortex core switching in nanometer-scale permalloy disk, having a single vortex ground state, was investigated by micromagnetic modeling. When an in-plane magnetic field pulse with an appropriate strength and duration is applied to the vortex structure, additional two vortices, i.e., a circular- and an anti-vortex, are created near the original vortex core. Sequentially, the vortex-antivortex pair annihilates. A spin wave is created at the annihilation point and propagated through the entire element; the relaxed state for the system is the single vortex state with a switched vortex core.

rate research

Read More

We investigate the influence of artificial defects (small holes) inserted into magnetic nanodisks on the vortex core dynamics. One and two holes (antidots) are considered. In general, the core falls into the hole but, in particular, we would like to remark an interesting phenomenon not yet observed, which is the vortex core switching induced by the vortex-hole interactions. It occurs for the case with only one hole and for very special conditions involving the hole size and position as well as the disk size. Any small deformation in the disk geometry such as the presence of a second antidot changes completely the vortex dynamics and the vortex core eventually falls into one of the defects. After trapped, the vortex center still oscillates with a very high frequency and small amplitude around the defect center.
Defects introduced in ferromagnetic nanodisks may deeply affect the structure and dynamics of stable vortex-like magnetization. Here, analytical techniques are used for studying, among other dynamical aspects, how a small cylindrical cavity modify the oscillatory modes of the vortex. For instance, we have realized that if the vortex is nucleated out from the hole its gyrotropic frequencies are shifted below. Modifications become even more pronounced when the vortex core is partially or completely captured by the hole. In these cases, the gyrovector can be partially or completely suppressed, so that the associated frequencies increase considerably, say, from some times to several powers. Possible relevance of our results for understanding other aspects of vortex dynamics in the presence of cavities and/or structural defects are also discussed.
Vortex core polarity switching in NiFe disks has been evidenced using an all-electrical rectification scheme. Both simulation and experiments yield a consistent loss of the rectified signal when driving the core at high powers near its gyrotropic resonant frequency. The frequency range over which the loss occurs grows and shifts with increasing signal power, consistent with non-linear core dynamics and periodic switching of the core polarity induced by the core attaining its critical velocity. We demonstrate that core polarity switching can be impeded by displacing the core towards the disks edge where an increased core stiffness reduces the maximum attainable core velocity.
Direct observation of vortex states in an antiferromagnetic layer have been recently reported [Wu, et al, Nature Phys. 7, 303 (2011)]. In contrast to their analogues in ferromagnetic systems, namely in nanomagnets, the vortex core of antiferromagnets are not expected (and have not been observed) to present gyrotropic or any other remarkable dynamics, even when external fields are applied. Using simulated annealing and spin dynamics techniques we have been able to describe a number of properties of such a vortex state. Besides of being in agreement with reported results, our results also indicate, whenever applied to antiferromagnetic nanodisks, that the presence of holes in the sample may induce two types of motions for this vortex. Its dynamics depends upon the relative separation between its core and the hole: when they are very apart the vortex core oscillates near the nanodisk center (its equilibrium position); while, if they are sufficiently close, the core moves towards the hole where it is captured and remains static.
We investigate magnetic nano-pillars, in which two thin ferromagnetic nanoparticles are separated by a nanometer thin nonmagnetic spacer and can be set into stable spin vortex-pair configurations. The 16 ground states of the vortex-pair system are characterized by parallel or antiparallel chirality and parallel or antiparallel core-core alignment. We detect and differentiate these individual vortex-pair states experimentally and analyze their dynamics analytically and numerically. Of particular interest is the limit of strong core-core coupling, which we find can dominate the spin dynamics in the system. We observe that the 0.2 GHz gyrational resonance modes of the individual vortices are replaced with 2-6 GHz range collective rotational and vibrational core-core resonances in the configurations where the cores form a bound pair. These results demonstrate new opportunities in producing and manipulating spin states on the nanoscale and may prove useful for new types of ultra-dense storage devices where the information is stored as multiple vortex-core configurations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا