Do you want to publish a course? Click here

Vortex core dynamics induced by hole defects in antiferromagnetic nanodisks

131   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Direct observation of vortex states in an antiferromagnetic layer have been recently reported [Wu, et al, Nature Phys. 7, 303 (2011)]. In contrast to their analogues in ferromagnetic systems, namely in nanomagnets, the vortex core of antiferromagnets are not expected (and have not been observed) to present gyrotropic or any other remarkable dynamics, even when external fields are applied. Using simulated annealing and spin dynamics techniques we have been able to describe a number of properties of such a vortex state. Besides of being in agreement with reported results, our results also indicate, whenever applied to antiferromagnetic nanodisks, that the presence of holes in the sample may induce two types of motions for this vortex. Its dynamics depends upon the relative separation between its core and the hole: when they are very apart the vortex core oscillates near the nanodisk center (its equilibrium position); while, if they are sufficiently close, the core moves towards the hole where it is captured and remains static.

rate research

Read More

Defects introduced in ferromagnetic nanodisks may deeply affect the structure and dynamics of stable vortex-like magnetization. Here, analytical techniques are used for studying, among other dynamical aspects, how a small cylindrical cavity modify the oscillatory modes of the vortex. For instance, we have realized that if the vortex is nucleated out from the hole its gyrotropic frequencies are shifted below. Modifications become even more pronounced when the vortex core is partially or completely captured by the hole. In these cases, the gyrovector can be partially or completely suppressed, so that the associated frequencies increase considerably, say, from some times to several powers. Possible relevance of our results for understanding other aspects of vortex dynamics in the presence of cavities and/or structural defects are also discussed.
171 - Q.F. Xiao , J. Rudge , B.C. Choi 2006
Dynamics of magnetic vortex core switching in nanometer-scale permalloy disk, having a single vortex ground state, was investigated by micromagnetic modeling. When an in-plane magnetic field pulse with an appropriate strength and duration is applied to the vortex structure, additional two vortices, i.e., a circular- and an anti-vortex, are created near the original vortex core. Sequentially, the vortex-antivortex pair annihilates. A spin wave is created at the annihilation point and propagated through the entire element; the relaxed state for the system is the single vortex state with a switched vortex core.
We investigate the influence of artificial defects (small holes) inserted into magnetic nanodisks on the vortex core dynamics. One and two holes (antidots) are considered. In general, the core falls into the hole but, in particular, we would like to remark an interesting phenomenon not yet observed, which is the vortex core switching induced by the vortex-hole interactions. It occurs for the case with only one hole and for very special conditions involving the hole size and position as well as the disk size. Any small deformation in the disk geometry such as the presence of a second antidot changes completely the vortex dynamics and the vortex core eventually falls into one of the defects. After trapped, the vortex center still oscillates with a very high frequency and small amplitude around the defect center.
We report a novel soft x-ray nanodiffraction study of antiferromagnetic domains in the strongly correlated bylayer manganite La$_{0.96}$Sr$_{2.04}$Mn$_{2}$O$_{7}$. We find that the antiferromagnetic domains are quenched, forming a unique domain pattern with each domain having an intrinsic memory of its spin direction, and with associated domain walls running along crystallographic directions. This can be explained by the presence of crystallographic or magnetic imperfections locked in during the crystal growth process which pin the antiferromagnetic domains. The antiferromagnetic domain pattern shows two distinct types of domain. We observe, in one type only, a periodic ripple in the manganese spin direction with a period of approximately 4 micrometer. We propose that the loss of inversion symmetry within a bilayer is responsible for this ripple structure through a Dzyaloshinskii-Moriya-type interaction.
We report a study of quantum oscillations in the high-field magneto-resistance of the nodal-line semimetal HfSiS. In the presence of a magnetic field up to 31 T parallel to the c-axis, we observe quantum oscillations originating both from orbits of individual electron and hole pockets, and from magnetic breakdown between these pockets. In particular, we find an oscillation associated with a breakdown orbit enclosing one electron and one hole pocket in the form of a `figure of eight. This observation represents an experimental confirmation of the momentum space analog of Klein tunneling. When the c-axis and the magnetic field are misaligned with respect to one another, this oscillation rapidly decreases in intensity. Finally, we extract the cyclotron masses from the temperature dependence of the oscillations, and find that the mass of the figure of eight orbit corresponds to the sum of the individual pockets, consistent with theoretical predictions for Klein tunneling in topological semimetals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا