Do you want to publish a course? Click here

Infrared probe of the anomalous magnetotransport of highly oriented pyrolytic graphite in the extreme quantum limit

91   0   0.0 ( 0 )
 Added by Zhiqiang Li
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a systematic investigation of the magnetoreflectance of highly oriented pyrolytic graphite in magnetic field B up to 18 T . From these measurements, we report the determination of lifetimes tau associated with the lowest Landau levels in the quantum limit. We find a linear field dependence for inverse lifetime 1/tau(B) of the lowest Landau levels, which is consistent with the hypothesis of a three-dimensional (3D) to 1D crossover in an anisotropic 3D metal in the quantum limit. This enigmatic result uncovers the origin of the anomalous linear in-plane magnetoresistance observed both in bulk graphite and recently in mesoscopic graphite samples.



rate research

Read More

We report on the magnetic field (0T$ le B le 9$T) dependence of the longitudinal thermal conductivity $kappa(T,B)$ of highly oriented pyrolytic graphite in the temperature range 5 K $le Tle$ 20 K for fields parallel to the $c-$axis. We show that $kappa(T,B)$ shows large oscillations in the high-field region (B > 2 T) where clear signs of the Quantum-Hall effect are observed in the Hall resistance. With the measured longitudinal electrical resistivity we show that the Wiedemann-Franz law is violated in the high-field regime.
High resolution magnetoresistance data in highly oriented pyrolytic graphite thin samples manifest non-homogenous superconductivity with critical temperature $T_c sim 25 $K. These data exhibit: i) hysteretic loops of resistance versus magnetic field similar to Josephson-coupled grains, ii) quantum Andreevs resonances and iii) absence of the Schubnikov-de Haas oscillations. The results indicate that graphite is a system with non-percolative superconducting domains immersed in a semiconducting-like matrix. As possible origin of the superconductivity in graphite we discuss interior-gap superconductivity when two very different electronic masses are present.
Graphite surfaces interact weakly with molecules compared to other conducting surfaces bringing the molecule-molecule interaction to the foreground. C$_{60}$ on highly oriented pyrolytic graphite is a model system for studying the molecular self-assembly on surfaces. Our scanning tunneling microscopy measurements at liquid nitrogen temperatures confirm the previously observed island growth mode. Our results indicate that there is an epitaxial relationship of the molecular islands and the substrate with three possible orientations of the islands. For one of these orientations, we determine this epitaxial relationship by analyzing in detail an image taken across a C$_{60}$ island step edge. In this image we have obtained high resolution on both the molecular island and the substrate. The result of this analysis is confirmed by two-dimensional Fourier analysis.
374 - M. J. Webb , P. Palmgren , P. Pal 2011
A simple and effective stepwise-method has been developed to remove defects from the top graphene layers of highly orientated pyrolytic graphite. Using a combination of ozone exposure and moderately high temperature we have shown that a defect-rich graphite surface can be modified to generate a graphene-like surface containing a negligible amount of oxygen, hydrogen and sp3 carbon. We report definitive x-ray photoelectron and x-ray absorption spectroscopy analysis after each stage of the process, suggest a mechanism by which the modification occurs and propose it as a route towards the preparation or manipulation of pristine graphene samples.
Macroscopic concentration of massless charge carriers with linear conic spectrum - Dirac Fermions (DF) - was shown in 2004 to exist in highly oriented pyrolytic graphite (HOPG) and governs its electronic properties. These carriers can have the same nature as DF observed in graphite monolayer(graphene) and let to view HOPG as superposition of 2D carbon layers, almost independent electronically. We overview here the recent experimental evidences of 2D DF in graphite and their similarity with carriers in graphene.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا