No Arabic abstract
We report on Sb nuclear-quadrupole-resonance (NQR) study in filled-skutterudite compounds (Pr_1-xLa_x)Os_4Sb_12. The Sb-NQR spectra have split into two sets, arising from different Sb_12 cages containing either Pr or La, which enables us to measure two kinds of nuclear spin-lattice relaxation time T_1^Pr and T_1^La. In the normal state, the temperature (T) dependence of 1/T^Pr_1T showed almost the same behavior as that for PrOs_4Sb_12 regardless of. In contrast, 1/T^La_1T markedly decreases with increasing La concentration. In the superconducting state for x=0.05 and 0.2, 1/T_1^Pr exponentially decreases down to T=0.7 K with no coherence peak below T_c as well as in PrOs_4Sb_12. A remarkable finding is that the residual density of states at the Fermi level below T_c is induced by La substitution for Pr. These results are proposed to be understood in terms of a multiband-superconductivity model that assumes a full gap for part of the FS and the presence of point nodes for a small 4f^2-derived FS inherent in PrOs_4Sb_12. For x=0.8 and 1,1/T^La_1 exhibits a coherence peak and the nodeless energy gap characteristic for weak-coupling s-wave superconductors. With increasing Pr content, T_c and the energy gap increases. The novel strong-coupling superconductivity in PrOs_4Sb_12 is inferred to be mediated by the local interaction between 4f^2-derived crystal-electric-field states with the electric quadrupole degree of freedom and conduction electrons. This coupling causes a mass enhancement of quasi-particles for a part of FS and induces a small FS, which is responsible for point nodes in the superconducting gap function. Note that the small FS does not play any primary role for the strong-coupling superconductivity in PrOs_4Sb_12.
We report Sb-NQR results which evidence a heavy-fermion (HF) behavior and an unconventional superconducting (SC) property in the filled-skutterudite compound PrOs_4Sb_12 revealing a SC transition temperature T_c=1.85 K. The temperature (T) dependence of nuclear-spin-lattice-relaxation rate 1/T_1 and NQR frequency unravel a low-lying crystal-electric-field splitting below T_0~10 K, associated with Pr^3+ (4f^2)-derived ground state. The emergence of T_1T=const. behavior below T_F~4 K points to the formation of heavy-quasiparticle state. In the SC state, 1/T_1 shows neither a coherence peak nor a T^3like power-law behavior observed for HF superconductors to date. The isotropic energy-gap with a size of gap Delta/k_B=4.8 K begins to already open up at T^*~2.3 K without any coherence effect just below T_c=1.85 K. We highlight that the superconductivity in PrOs_4Sb_12, which is in an unconventional strong-coupling regime, differs from a conventional s-wave type and any unconventional ones with the line-node gap.
Measurements of the upper critical field $H_{c2}$ near $T_c$ of Pr$_{1- x}$La$_{x}$Os$_{4}$Sb$_{12}$ were performed by specific heat. A positive curvature in $H_{c2}$ versus $T$ was observed in samples and concentrations exhibiting two superconducting transitions. These results argue against this curvature being due to two-band superconductivity. The critical field slope - $dH_{c2}/dT$ suggests the existence of a crossover concentration $x_{cr} approx 0.25$, below which there is a rapid suppression of effective electron mass with La-alloying. This crossover concentration was previously detected in the measurement of the discontinuity of $C/T$ at $T_c$.
We report measurements of the magnetic penetration depth $lambda$ in single crystals of Pr(Os$_{1-x}$Ru$_{x}$)$_{4}$Sb$_{12}$ down to 0.1 K. Both $lambda$ and superfluid density $rho_{s}$ exhibit an exponential behavior for the $x$$geq$0.4 samples, going from weak ($x$=0.4,0.6), to moderate, coupling ($x$=0.8). For the $x$$leq$0.2 samples, both $lambda$ and $rho_{s}$ vary as $T^{2}$ at low temperatures, but $rho_{s}$ is s-wave-like at intermediate to high temperatures. Our data are consistent with a three-phase scenario, where a fully-gapped phase at $T_{c1}$ undergoes two transitions: first to an unconventional phase at $T_{c2}$$lesssim$$T_{c1}$, then to a nodal low-$T$ phase at $T_{c3}$$<$$T_{c2}$, for small values of $x$.
We report the electronic and superconducting properties in the Pr-based filled-skutterudite superconductor PrRu$_4$Sb$_{12}$ with $T_c = 1.3$ K via the measurements of nuclear-quadrupole-resonance (NQR) frequency $ u_Q$ and nuclear-spin-lattice-relaxation time $T_1$ of Sb nuclei. The temperature dependence of $ u_Q$ has revealed the energy scheme of Pr$^{3+}$ crystal electric field (CEF) that is consistent with an energy separation $Delta_{CEF}sim 70$K between the ground state and the first-excited state. In the normal state, the Korringa relation of $(1/T_1T)_{Pr}$=const. is valid, with [$(1/T_{1}T$)$_{Pr}$/$(1/T_{1}T$)$_{La}$]$^{1/2}$ $sim$ 1.44 where $(1/T_1T)_{La}$ is for LaRu$_4$Sb$_{12}$. These results are understood in terms of a conventional Fermi liquid picture in which the Pr-$4f^2$ state derives neither magnetic nor quadrupolar degrees of freedom at low temperatures. In the superconducting state, $1/T_1$ shows a distinct coherence peak just below $T_c$, followed by an exponential decrease with a value of 2$Delta/k_{B}T_{c}$ = 3.1. These results demonstrate that PrRu$_4$Sb$_{12}$ is a typical weak-coupling s-wave superconductor, in strong contrast with the heavy-fermion superconductor PrOs$_4$Sb$_{12}$ that is in an unconventional strong coupling regime. The present study on PrRu$_4$Sb$_{12}$ highlights that the Pr-$4f^2$derived non-magnetic doublet plays a key role in the unconventional electronic and superconducting properties in PrOs$_4$Sb$_{12}$.
We report a study of the superconducting and normal-state properties of the filled-skutterudite system PrPt$_{4}$Ge$_{12-x}$Sb$_x$. Polycrystalline samples with Sb concentrations up to $x =$ 5 were synthesized and investigated by means of x-ray diffraction, electrical resistivity, magnetic susceptibility, and specific heat measurements. We observed a suppression of superconductivity with increasing Sb substitution up to $x =$ 4, above which, no signature of superconductivity was observed down to 140 mK. The Sommerfeld coefficient, $gamma$, of superconducting specimens decreases with increasing $x$ up to $x =$ 3, suggesting that superconductivity may depend on the density of electronic states in this system. The specific heat for $x =$ 0.5 exhibits an exponential temperature dependence in the superconducting state, reminiscent of a nodeless superconducting energy gap. We observed evidence for a weak rattling mode associated with the Pr ions, characterized by an Einstein temperature $Theta_{mathrm{E}} sim$ 60 K for 0 $leq x leq$ 5; however, the rattling mode may not play any role in suppressing superconductivity.