No Arabic abstract
Using a spin-rotation invariant version of the slave-boson approach we investigate the relative stability and band structure of various incommensurate phases in the cuprates. Our findings obtained in the Hubbard model with next-nearest neighbor hopping $-t/tsimeq 0.15$, as appropriate for the La$_{2-x}$Sr$_x$CuO$_4$ family, support the formation of diagonal (vertical) stripe phases in the doping regime $x=1/16$ ($x=1/8$), respectively. In contrast, based on the fact that a larger value $-t/t=0.3$ expected for YBa$_2$Cu$_3$O$_{6+delta}$ triggers a crossover to the diagonal (1,1) spiral phase at increasing doping, we argue that it might explain why the static charge order has been detected in YBa$_2$Cu$_3$O$_{6+delta}$ only in the highly underdoped regime.
Photoemission spectra of underdoped and lightly-doped Bi$_{2-z}$Pb$_z$Sr$_2$Ca$_{1-x}${it R}$_{x}$Cu$_2$O$_{8+y}$ ($R=$ Pr, Er) (BSCCO) have been measured and compared with those of La$_{2-x}$Sr$_x$CuO$_4$ (LSCO). The lower-Hubbard band of the insulating BSCCO, like Ca$_2$CuO$_2$Cl$_2$, shows a stronger dispersion than La$_2$CuO$_4$ from ${bf k}sim$($pi/2,pi/2$) to $sim$($pi,0$). The flat band at ${bf k}sim$($pi,0$) is found generally deeper in BSCCO. These observations together with the Fermi-surface shapes and the chemical potential shifts indicate that the next-nearest-neighbor hopping $|t^{prime}|$ of the single-band model is larger in BSCCO than in LSCO and that $|t^{prime}|$ rather than the super-exchange $J$ influences the pseudogap energy scale.
We calculate the local Green function for a quantum-mechanical particle with hopping between nearest and next-nearest neighbors on the Bethe lattice, where the on-site energies may alternate on sublattices. For infinite connectivity the renormalized perturbation expansion is carried out by counting all non-self-intersecting paths, leading to an implicit equation for the local Green function. By integrating out branches of the Bethe lattice the same equation is obtained from a path integral approach for the partition function. This also provides the local Green function for finite connectivity. Finally, a recently developed topological approach is extended to derive an operator identity which maps the problem onto the case of only nearest-neighbor hopping. We find in particular that hopping between next-nearest neighbors leads to an asymmetric spectrum with additional van-Hove singularities.
We study the one-dimensional Hubbard model with nearest-neighbor and next-nearest-neighbor hopping integrals by using the density-matrix renormalization group (DMRG) method and Hartree-Fock approximation. Based on the calculated results for the spin gap, total-spin quantum number, and Tomonaga-Luttinger-liquid parameter, we determine the ground-state phase diagram of the model in the entire filling and wide parameter region. We show that, in contrast to the weak-coupling regime where a spin-gapped liquid phase is predicted in the region with four Fermi points, the spin gap vanishes in a substantial region in the strong-coupling regime. It is remarkable that a large variety of phases, such as the paramagnetic metallic phase, spin-gapped liquid phase, singlet and triplet superconducting phases, and fully polarized ferromagnetic phase, appear in such a simple model in the strong-coupling regime.
We study the impact of next-nearest-neighbor (nnn) hopping on the low-energy collective excitations of strongly correlated doped antiferromagnetic cuprate spin chains. Specifically, we use exact diagonalization and the density matrix renormalization group method to study the single-particle spectral function, the dynamical spin and charge structure factors, and the Cu $L$-edge resonant inelastic x-ray scattering (RIXS) intensity of the doped $t$-$t^prime$-$J$ model for a set of $t^prime$ values. We find evidence for the breakdown of spin-charge separation as $|t^prime|$ increases and identify its fingerprints in the dynamical response functions. The inclusion of nnn hopping couples the spinon and holon excitations, resulting in the formation of a spin-polaron, where a ferromagnetic spin polarization cloud dresses the doped carrier. The spin-polaron manifests itself as additional spectral weight in the dynamical correlation functions, which appear simultaneously in the spin- and charge-sensitive channels. We also demonstrate that RIXS can provide a unique view of the spin-polaron, due to its sensitivity to both the spin and charge degrees of freedom.
The dynamical density-matrix renormalization group technique is used to calculate spin and charge excitation spectra in the one-dimensional (1D) Hubbard model at quarter filling with nearest-neighbor $t$ and next-nearest-neighbor $t$ hopping integrals. We consider a case where $t$ ($>0$) is much smaller than $t$ ($>0$). We find that the spin and charge excitation spectra come from the two nearly independent $t$-chains and are basically the same as those of the 1D Hubbard (and t-J) chain at quarter filling. However, we find that the hopping integral $t$ plays a crucial role in the short-range spin and charge correlations; i.e., the ferromagnetic spin correlations between electrons on the neighboring sites is enhanced and simultaneously the spin-triplet pairing correlations is induced, of which the consequences are clearly seen in the calculated spin and charge excitation spectra at low energies.