Do you want to publish a course? Click here

Effects of next-nearest-neighbor hopping $t^{prime}$ on the electronic structure of cuprates

121   0   0.0 ( 0 )
 Added by Kiyohisa Tanaka
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Photoemission spectra of underdoped and lightly-doped Bi$_{2-z}$Pb$_z$Sr$_2$Ca$_{1-x}${it R}$_{x}$Cu$_2$O$_{8+y}$ ($R=$ Pr, Er) (BSCCO) have been measured and compared with those of La$_{2-x}$Sr$_x$CuO$_4$ (LSCO). The lower-Hubbard band of the insulating BSCCO, like Ca$_2$CuO$_2$Cl$_2$, shows a stronger dispersion than La$_2$CuO$_4$ from ${bf k}sim$($pi/2,pi/2$) to $sim$($pi,0$). The flat band at ${bf k}sim$($pi,0$) is found generally deeper in BSCCO. These observations together with the Fermi-surface shapes and the chemical potential shifts indicate that the next-nearest-neighbor hopping $|t^{prime}|$ of the single-band model is larger in BSCCO than in LSCO and that $|t^{prime}|$ rather than the super-exchange $J$ influences the pseudogap energy scale.



rate research

Read More

Using a spin-rotation invariant version of the slave-boson approach we investigate the relative stability and band structure of various incommensurate phases in the cuprates. Our findings obtained in the Hubbard model with next-nearest neighbor hopping $-t/tsimeq 0.15$, as appropriate for the La$_{2-x}$Sr$_x$CuO$_4$ family, support the formation of diagonal (vertical) stripe phases in the doping regime $x=1/16$ ($x=1/8$), respectively. In contrast, based on the fact that a larger value $-t/t=0.3$ expected for YBa$_2$Cu$_3$O$_{6+delta}$ triggers a crossover to the diagonal (1,1) spiral phase at increasing doping, we argue that it might explain why the static charge order has been detected in YBa$_2$Cu$_3$O$_{6+delta}$ only in the highly underdoped regime.
We calculate the local Green function for a quantum-mechanical particle with hopping between nearest and next-nearest neighbors on the Bethe lattice, where the on-site energies may alternate on sublattices. For infinite connectivity the renormalized perturbation expansion is carried out by counting all non-self-intersecting paths, leading to an implicit equation for the local Green function. By integrating out branches of the Bethe lattice the same equation is obtained from a path integral approach for the partition function. This also provides the local Green function for finite connectivity. Finally, a recently developed topological approach is extended to derive an operator identity which maps the problem onto the case of only nearest-neighbor hopping. We find in particular that hopping between next-nearest neighbors leads to an asymmetric spectrum with additional van-Hove singularities.
A chiral $p_x+ip_y$ superconductor on a square lattice with nearest and next-nearest hopping and pairing terms is considered. Gap closures, as various parameters of the system are varied, are found analytically and used to identify the topological phases. The phases are characterized by Chern numbers (ranging from -3 to 3), and (numerically) by response to introduction of weak disorder, edges, and magnetic fields in an extreme type-II limit, focusing on the low-energy modes (which presumably become zero-energy Majorana modes for large lattices and separations). Several phases are found, including a phase with Chern number 3 that cannot be thought of in terms of a single range of interaction, and phase with Chern number 2 that may host an additional, disorder resistant, Majorana mode. The energies of the vortex quasiparticle modes were found to oscillate as vortex position varied. The spatial length scale of these oscillations was found for various points in the Chern number 3 phase which increased as criticality was approached.
We performed neutron powder diffraction measurements on the as-sintered (AS) and oxygen-reduced (OR) La$_{1.8}$Eu$_{0.2}$CuO$_{4+alpha-delta}$ (LECO). The structural parameters for oxygens in AS and OR samples refined by the Rietveld analysis are almost identical to those of the reference system, Pr$_{2}$CuO$_{4+alpha-delta}$. Thus, the two systems are comparable in terms of the structural changes in oxygens due to the annealing, although superconductivity appears only in LECO.
We present a phenomenological model that describes the low energy electronic structure of the cuprate high temperature superconductor Bi2Sr2CaCu2O8+x as observed by Spectroscopic Imagining Scanning Tunneling Microscopy (SI-STM). Our model is based on observations from Quasiparticle Interference (QPI) measurements and Local Density of States (LDOS) measurements that span a range of hole densities from critical doping, p~0.19, to extremely underdoped, p~0.06. The model presented below unifies the spectral density of states observed in QPI studies with that of the LDOS. In unifying these two separate measurements, we find that the previously reported phenomena, the Bogoliubov QPI termination, the checkerboard conductance modulations, and the pseudogap are associated with unique energy scales that have features present in both the q-space and LDOS(E) data sets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا