Do you want to publish a course? Click here

Electronic structure and optical properties of lightweight metal hydrides

231   0   0.0 ( 0 )
 Added by Michiel van Setten
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the electronic structures and dielectric functions of the simple hydrides LiH, NaH, MgH2 and AlH3, and the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4 and Mg(AlH4)2, using first principles density functional theory and GW calculations. All these compounds are large gap insulators with GW single particle band gaps varying from 3.5 eV in AlH3 to 6.5 eV in the MAlH4 compounds. The valence bands are dominated by the hydrogen atoms, whereas the conduction bands have mixed contributions from the hydrogens and the metal cations. The electronic structure of the aluminium compounds is determined mainly by aluminium hydride complexes and their mutual interactions. Despite considerable differences between the band structures and the band gaps of the various compounds, their optical responses are qualitatively similar. In most of the spectra the optical absorption rises sharply above 6 eV and has a strong peak around 8 eV. The quantitative differences in the optical spectra are interpreted in terms of the structure and the electronic structure of the compounds.



rate research

Read More

Zirconium alloys are used as nuclear fuel cladding material due to their mechanical and corrosion resistant properties together with their favorable cross-section for neutron scattering. At running conditions, however, there will be an increase of hydrogen in the vicinity of the cladding surface at the water side of the fuel. The hydrogen will diffuse into the cladding material and at certain conditions, such as lower temperatures and external load, hydrides will precipitate out in the material and cause well known embrittlement, blistering and other unwanted effects. Using phase-field methods it is now possible to model precipitation build-up in metals, for example as a function of hydrogen concentration, temperature and external load, but the technique relies on input of parameters, such as the formation energy of the hydrides and matrix. To that end, we have computed, using the density functional theory (DFT) code GPAW, the latent heat of fusion as well as solved the crystal structure for three zirconium hydride polymorphs: delta-ZrH1.6, gamma-ZrH, and epsilon-ZrH2.
155 - A. Akrap , Y. M. Dai , W. Wu 2013
The complex optical properties of a single crystal of hexagonal FeCrAs ($T_N simeq 125$ K) have been determined above and below $T_N$ over a wide frequency range in the planes (along the $b$ axis), and along the perpendicular ($c$ axis) direction. At room temperature, the optical conductivity $sigma_1(omega)$ has an anisotropic metallic character. The electronic band structure reveals two bands crossing the Fermi level, allowing the optical properties to be described by two free-carrier (Drude) contributions consisting of a strong, broad component and a weak, narrow term that describes the increase in $sigma_1(omega)$ below $simeq 15$ meV. The dc-resistivity of FeCrAs is ``non-metallic, meaning that it rises in power-law fashion with decreasing temperature, without any signature of a transport gap. In the analysis of the optical conductivity, the scattering rates for both Drude contributions track the dc-resistivity quite well, leading us to conclude that the non-metallic resistivity of FeCrAs is primarily due to a scattering rate that increases with decreasing temperature, rather than the loss of free carriers. The power law $sigma_1(omega) propto omega^{-0.6}$ is observed in the near-infrared region and as $Trightarrow T_N$ spectral weight is transferred from low to high energy ($gtrsim 0.6$ eV); these effects may be explained by either the two-Drude model or Hunds coupling. We also find that a low-frequency in-plane phonon mode decreases in frequency for $T < T_N$, suggesting the possibility of spin-phonon coupling.
123 - Valery I. Rupasov 2009
In the framework of four-band envelope-function formalism, developed earlier for spherical semiconductor nanocrystals, we study the electronic structure and optical properties of quantum-confined lead-salt (PbSe and PbS) nanowires (NWs) with a strong coupling between the conduction and the valence bands. We derive spatial quantization equations, and calculate numerically energy levels of spatially quantized states of a transverse electron motion in the plane perpendicular to the NW axis, and electronic subbands developed due to a free longitudinal motion along the NW axis. Using explicit expressions for eigenfunctions of the electronic states, we also derive analytical expressions for matrix elements of optical transitions and study selection rules for interband absorption. Next we study a two-particle problem with a conventional long-range Coulomb interaction and an interparticle coupling via medium polarization. The obtained results show that due to a large magnitude of the high-frequency dielectric permittivity of PbSe material, and hence, a high dielectric NW/vacuum contrast, the effective coupling via medium polarization significantly exceeds the effective direct Coulomb coupling at all interparticle separations along the NW axis. Furthermore, the strong coupling via medium polarization results in a bound state of the longitudinal motion of the lowest-energy electron-hole pair (a longitudinal exciton), while fast transverse motions of charge carriers remain independent of each other.
Due to their characteristic geometry, TiO$_2$ nanotubes (TNTs), suitably doped by metal-substitution to enhance their photocatalytic properties, have a high potential for applications such as clean fuel production. In this context, we present a detailed investigation of the magnetic, electronic, and optical properties of transition-metal doped TNTs, based on hybrid density functional theory. In particular, we focus on the $3d$, the $4d$, as well as selected $5d$ transition-metal doped TNTs. Thereby, we are able to explain the enhanced optical activity and photocatalytic sensitivity observed in various experiments. We find, for example, that Cr- and W-doped TNTs can be employed for applications like water splitting and carbon dioxide reduction, and for spintronic devices. The best candidate for water splitting is Fe-doped TNT, in agreement with experimental observations. In addition, our findings provide valuable hints for future experimental studies of the ferromagnetic/spintronic behavior of metal-doped titania nanotubes.
The magnetic and electronic properties of metal phthalocyanines (MPc) and fluorinated metal phthalocyanines (F$_{16}$MPc) are studied by means of spin density functional theory (SDFT). Several metals (M) such as Ca, all first d-row transition metals and Ag are investigated. By considering different open shell transition metals it is possible to tune the electronic properties of MPc, in particular the electronic molecular gap and total magnetic moment. Besides assigning the structural and electronic properties of MPc and F$_{16}$MPc, the vibrational modes analysis of the ScPctextendash ZnPc series have been studied and correlated to experimental measurements when available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا