No Arabic abstract
The translationally invariant diagrammatic quantum perturbation theory (TPT) is applied to the polaron problem on the 1D lattice, modeled through the Holstein Hamiltonian with the phonon frequency omega0, the electron hopping t and the electron-phonon coupling constant g. The self-energy diagrams of the fourth-order in g are calculated exactly for an intermittently added electron, in addition to the previously known second-order term. The corresponding quadratic and quartic corrections to the polaron ground state energy become comparable at t/omega0>1 for g/omega0~(t/omega0)^{1/4} when the electron self-trapping and translation become adiabatic. The corresponding non adiabatic/adiabatic crossover occurs while the polaron width is large, i.e. the lattice coarsening negligible. This result is extended to the range (t/omega0)^{1/2}>g/omega0>(t/omega0)^{1/4}>1 by considering the scaling properties of the high-order self-energy diagrams. It is shown that the polaron ground state energy, its width and the effective mass agree with the results found traditionally from the broken symmetry side, kinematic corrections included. The Landau self trapping of the electron in the classic self-consistent, localized displacement potential, the restoration of the translational symmetry by the classic translational Goldstone mode and the quantization of the polaronic translational coordinate are thus all encompassed by a quantum theory which is translationally invariant from the outset.
The carrier-density dependence of the photoemission spectrum of the Holstein many-polaron model is studied using cluster perturbation theory combined with an improved cluster diagonalization by Chebychev expansion.
We present a novel approach to long-range correlations beyond dynamical mean-field theory through a ladder approximation to dual fermions. The new technique is applied to the two-dimensional Hubbard model. We demonstrate that the transformed perturbation series for the nonlocal dual fermions has superior convergence properties over standard diagrammatic techniques. The critical Neel temperature of the mean-field solution is suppressed in the ladder approximation, in accordance with quantum Monte-Carlo (QMC) results. An illustration of how the approach captures and allows to distinguish short- and long-range correlations is given.
We study anomalous dimensions of unprotected low twist operators in the four-dimensional $SU(N)$ $mathcal{N}=4$ supersymmetric Yang-Mills theory. We construct a class of interpolating functions to approximate the dimensions of the leading twist operators for arbitrary gauge coupling $tau$. The interpolating functions are consistent with previous results on the perturbation theory, holographic computation and full S-duality. We use our interpolating functions to test a recent conjecture by the $mathcal{N}=4$ superconformal bootstrap that upper bounds on the dimensions are saturated at one of the duality-invariant points $tau =i$ and $tau =e^{ipi /3}$. It turns out that our interpolating functions have maximum at $tau =e^{ipi /3}$, which are close to the conjectural values by the conformal bootstrap. In terms of the interpolating functions, we draw the image of conformal manifold in the space of the dimensions. We find that the image is almost a line despite the conformal manifold is two-dimensional. We also construct interpolating functions for the subleading twist operator and study level crossing phenomenon between the leading and subleading twist operators. Finally we study the dimension of the Konishi operator in the planar limit. We find that our interpolating functions match with numerical result obtained by Thermodynamic Bethe Ansatz very well. It turns out that analytic properties of the interpolating functions reflect an expectation on a radius of convergence of the perturbation theory.
We construct examples of translationally invariant solvable models of strongly-correlated metals, composed of lattices of Sachdev-Ye-Kitaev dots with identical local interactions. These models display crossovers as a function of temperature into regimes with local quantum criticality and marginal-Fermi liquid behavior. In the marginal Fermi liquid regime, the dc resistivity increases linearly with temperature over a broad range of temperatures. By generalizing the form of interactions, we also construct examples of non-Fermi liquids with critical Fermi-surfaces. The self energy has a singular frequency dependence, but lacks momentum dependence, reminiscent of a dynamical mean field theory-like behavior but in dimensions $d<infty$. In the low temperature and strong-coupling limit, a heavy Fermi liquid is formed. The critical Fermi-surface in the non-Fermi liquid regime gives rise to quantum oscillations in the magnetization as a function of an external magnetic field in the absence of quasiparticle excitations. We discuss the implications of these results for local quantum criticality and for fundamental bounds on relaxation rates. Drawing on the lessons from these models, we formulate conjectures on coarse grained descriptions of a class of intermediate scale non-fermi liquid behavior in generic correlated metals.
The polaron formation is investigated in the intermediate regime of the Holstein model by using an exact diagonalization technique for the one-dimensional infinite lattice. The numerical results for the electron and phonon propagators are compared with the nonadiabatic weak- and strong-coupling perturbation theories, as well as with the harmonic adiabatic approximation. A qualitative explanation of the crossover regime between the self-trapped and free-particle-like behaviors, not well-understood previously, is proposed. It is shown that a fine balance of nonadiabatic and adiabatic contributions determines the motion of small polarons, making them light. A comprehensive analysis of spatially and temporally resolved low-frequency lattice correlations that characterize the translationally invariant polaron states is derived. Various behaviors of the polaronic deformation field, ranging from classical adiabatic for strong couplings to quantum nonadiabatic for weak couplings, are discussed.