Do you want to publish a course? Click here

Efficient perturbation theory for quantum lattice models

124   0   0.0 ( 0 )
 Added by Hartmut Hafermann
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a novel approach to long-range correlations beyond dynamical mean-field theory through a ladder approximation to dual fermions. The new technique is applied to the two-dimensional Hubbard model. We demonstrate that the transformed perturbation series for the nonlocal dual fermions has superior convergence properties over standard diagrammatic techniques. The critical Neel temperature of the mean-field solution is suppressed in the ladder approximation, in accordance with quantum Monte-Carlo (QMC) results. An illustration of how the approach captures and allows to distinguish short- and long-range correlations is given.



rate research

Read More

147 - Edwin W. Huang , Yao Wang 2021
Cluster Perturbation Theory (CPT) is a technique for computing the spectral function of fermionic models with local interactions. By combining the solution of the model on a finite cluster with perturbation theory on intra-cluster hoppings, CPT provides access to single-particle properties with arbitrary momentum resolution while incurring low computational cost. Here, we introduce Determinantal Quantum Monte Carlo (DQMC) as a solver for CPT. Compared to the standard solver, exact diagonalization (ED), the DQMC solver reduces finite size effects through utilizing larger clusters, allows study of temperature dependence, and enables large-scale simulations of a greater set of models. We discuss the implementation of the DQMC solver for CPT and benchmark the CPT+DQMC method for the attractive and repulsive Hubbard models, showcasing its advantages over standard DQMC and CPT+ED simulations.
195 - J. P. Coe 2019
We propose a lattice density-functional theory for {it ab initio} quantum chemistry or physics as a route to an efficient approach that approximates the full configuration interaction energy and orbital occupations for molecules with strongly-correlated electrons. We build on lattice density-functional theory for the Hubbard model by deriving Kohn-Sham equations for a reduced then full quantum chemistry Hamiltonian, and demonstrate the method on the potential energy curves for the challenging problem of modelling elongating bonds in a linear chain of six hydrogen atoms. Here the accuracy of the Bethe-ansatz local-density approximation is tested for this quantum chemistry system and we find that, despite this approximate functional being designed for the Hubbard model, the shapes of the potential curves generally agree with the full configuration interaction results. Although there is a discrepancy for very stretched bonds, this is lower than when using standard density-functional theory with the local-density approximation.
295 - O. S. Barisic , S. Barisic 2006
The translationally invariant diagrammatic quantum perturbation theory (TPT) is applied to the polaron problem on the 1D lattice, modeled through the Holstein Hamiltonian with the phonon frequency omega0, the electron hopping t and the electron-phonon coupling constant g. The self-energy diagrams of the fourth-order in g are calculated exactly for an intermittently added electron, in addition to the previously known second-order term. The corresponding quadratic and quartic corrections to the polaron ground state energy become comparable at t/omega0>1 for g/omega0~(t/omega0)^{1/4} when the electron self-trapping and translation become adiabatic. The corresponding non adiabatic/adiabatic crossover occurs while the polaron width is large, i.e. the lattice coarsening negligible. This result is extended to the range (t/omega0)^{1/2}>g/omega0>(t/omega0)^{1/4}>1 by considering the scaling properties of the high-order self-energy diagrams. It is shown that the polaron ground state energy, its width and the effective mass agree with the results found traditionally from the broken symmetry side, kinematic corrections included. The Landau self trapping of the electron in the classic self-consistent, localized displacement potential, the restoration of the translational symmetry by the classic translational Goldstone mode and the quantization of the polaronic translational coordinate are thus all encompassed by a quantum theory which is translationally invariant from the outset.
143 - H-Y.Yang , K.P. Schmidt 2010
We present a robust scheme to derive effective models non-perturbatively for quantum lattice models when at least one degree of freedom is gapped. A combination of graph theory and the method of continuous unitary transformations (gCUTs) is shown to efficiently capture all zero-temperature fluctuations in a controlled spatial range. The gCUT can be used either for effective quasi-particle descriptions or for effective low-energy descriptions in case of infinitely degenerate subspaces. We illustrate the method for 1d and 2d lattice models yielding convincing results in the thermodynamic limit. We find that the recently discovered spin liquid in the Hubbard model on the honeycomb lattice lies outside the perturbative strong-coupling regime. Various extensions and perspectives of the gCUT are discussed.
243 - Di Luo , Zhuo Chen , Kaiwen Hu 2021
Gauge invariance plays a crucial role in quantum mechanics from condensed matter physics to high energy physics. We develop an approach to constructing gauge invariant autoregressive neural networks for quantum lattice models. These networks can be efficiently sampled and explicitly obey gauge symmetries. We variationally optimize our gauge invariant autoregressive neural networks for ground states as well as real-time dynamics for a variety of models. We exactly represent the ground and excited states of the 2D and 3D toric codes, and the X-cube fracton model. We simulate the dynamics of the quantum link model of $text{U(1)}$ lattice gauge theory, obtain the phase diagram for the 2D $mathbb{Z}_2$ gauge theory, determine the phase transition and the central charge of the $text{SU(2)}_3$ anyonic chain, and also compute the ground state energy of the $text{SU(2)}$ invariant Heisenberg spin chain. Our approach provides powerful tools for exploring condensed matter physics, high energy physics and quantum information science.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا