Do you want to publish a course? Click here

Theory of the spin-torque-driven ferromagnetic resonance in a ferromagnet/normal-metal/ferromagnet structure

70   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a theoretical analysis of current driven ferromagnetic resonance in a ferromagnet/normal-metal/ferromagnet tri-layer. This method of driving ferromagnetic resonance was recently realized experimentally by Tulapurkar et al. [Nature 438, 339 (2005)] and Sankey et al. [Phys. Rev. Lett. 96, 227601 (2006)]. The precessing magnetization rectifies the alternating current applied to drive the ferromagnetic resonance and leads to the generation of a dc voltage. Our analysis shows that a second mechanism to generate a dc voltage, rectification of spin currents emitted by the precessing magnetization, has a contribution to the dc voltage that is of approximately equal size for the thin ferromagnetic films used in the experiment.



rate research

Read More

Creating, manipulating and detecting spin polarized carriers are the key elements of spin based electronics. Most practical devices use a perpendicular geometry in which the spin currents, describing the transport of spin angular momentum, are accompanied by charge currents. In recent years, new sources of pure spin currents, i.e., without charge currents, have been demonstrated and applied. In this paper, we demonstrate a conceptually new source of pure spin current driven by the flow of heat across a ferromagnetic/non-magnetic metal (FM/NM) interface. This spin current is generated because the Seebeck coefficient, which describes the generation of a voltage as a result of a temperature gradient, is spin dependent in a ferromagnet. For a detailed study of this new source of spins, it is measured in a non-local lateral geometry. We developed a 3D model that describes the heat, charge and spin transport in this geometry which allows us to quantify this process. We obtain a spin Seebeck coefficient for Permalloy of -3.8 microvolt/Kelvin demonstrating that thermally driven spin injection is a feasible alternative for electrical spin injection in, for example, spin transfer torque experiments.
We study the tunneling conductance of a ballistic normal metal / ferromagnet / spin-triplet superconductor junction using the extended Blonder-Tinkham-Klapwijk formalism as a model for a $c$-axis oriented Au / SrRuO$_{3}$ / Sr$_{2}$RuO$_{4}$ junction. We compare chiral $p$-wave (CPW) and helical $p$-wave (HPW) pair potentials, combined with ferromagnet magnetization directions parallel and perpendicular to the interface. For fixed $theta_{M}$, where $theta_{M}$ is a direction of magnetization in the ferromagnet measured from the $c$-axis, the tunneling conductance of CPW and HPW clearly show different voltage dependencies. It is found that the cases where the $d$-vector is perpendicular to the magnetization direction (CPW with $theta_{M} = pi/2$ and HPW with $theta_{M} = 0$) are identical. The obtained results serve as a guide to determine the pairing symmetry of the spin-triplet superconductor Sr$_{2}$RuO$_{4}$.
We describe electrical detection of spin pumping in metallic nanostructures. In the spin pumping effect, a precessing ferromagnet attached to a normal-metal acts as a pump of spin-polarized current, giving rise to a spin accumulation. The resulting spin accumulation induces a backflow of spin current into the ferromagnet and generates a dc voltage due to the spin dependent conductivities of the ferromagnet. The magnitude of such voltage is proportional to the spin-relaxation properties of the normal-metal. By using platinum as a contact material we observe, in agreement with theory, that the voltage is significantly reduced as compared to the case when aluminum was used. Furtheremore, the effects of rectification between the circulating rf currents and the magnetization precession of the ferromagnet are examined. Most significantly, we show that using an improved layout device geometry these effects can be minimized.
We study the effects of the coupling between magnetization dynamics and the electronic degrees of freedom in a heterostructure of a metallic nanomagnet with dynamic magnetization coupled with a superconductor containing a steady spin-splitting field. We predict how this system exhibits a non-linear spin torque, which can be driven either with a temperature difference or a voltage across the interface. We generalize this notion to arbitrary magnetization precession by deriving a Keldysh action for the interface, describing the coupled charge, heat and spin transport in the presence of a precessing magnetization. We characterize the effect of superconductivity on the precession damping and the anti-damping torques. We also predict the full non-linear characteristic of the Onsager counterparts of the torque, showing up via pumped charge and heat currents. For the latter, we predict a spin-pumping cooling effect, where the magnetization dynamics can cool either the nanomagnet or the superconductor.
We present a theoretical model that describes electrical spin-detection at a ferromagnet/semiconductor interface. We show that the sensitivity of the spin detector has strong bias dependence which, in the general case, is dramatically different from that of the tunneling current spin polarization. We show that this bias dependence originates from two distinct physical mechanisms: 1) the bias dependence of tunneling current spin polarization, which is of microscopic origin and depends on the specific properties of the interface, and 2) the macroscopic electron spin transport properties in the semiconductor. Numerical results show that the magnitude of the voltage signal can be tuned over a wide range from the second effect which suggests a universal method for enhancing electrical spin-detection sensitivity in ferromagnet/semiconductor tunnel contacts. Using first-principles calculations we examine the particular case of a Fe/GaAs Schottky tunnel barrier and find very good agreement with experiment. We also predict the bias dependence of the voltage signal for a Fe/MgO/GaAs tunnel structure spin detector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا