Do you want to publish a course? Click here

Interplay of paramagnetic, orbital and impurity effects on the phase transition of a normal metal to superconducting state

52   0   0.0 ( 0 )
 Added by M. Houzet
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive the generalized Ginzburg-Landau free energy functional for conventional and unconventional singlet superconductors in the presence of paramagnetic, orbital and impurity effects. Within the mean field theory, we determine the criterion for appearence of the non uniform (Fulde-Ferrell-Larkin-Ovchinnikov) superconducting state, with vortex lattice structure and additional modulation along the magnetic field. We also discuss the possible change of the order of transition from normal to superconducting state. We find that the superconducting phase diagram is very sensitive to geometrical effects such as the nature of the order parameter and the shape of the Fermi surface. In particular, we obtain the qualitative phase diagrams for three-dimensional isotropic s-wave superconductors and in quasi two-dimensional d-wave superconductors under magnetic field perpendicular to the conducting layers. In addition, we determine the criterion for instability toward non uniform superconducting state in s-wave superconductors in the dirty limit.

rate research

Read More

The metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing upon cooling from a charge density wave state. The interplay between such phases is thought to play a critical role in the unconventional superconductivity of cuprates, Fe-based, and heavy-fermion systems, yet even for the more moderately-correlated TMDCs, their nature and origins have proved highly controversial. Here, we study a prototypical example, $2H$-NbSe$_2$, by spin- and angle-resolved photoemission and first-principles theory. We find that the normal state, from which its hallmark collective phases emerge, is characterised by quasiparticles whose spin is locked to their valley pseudospin. This results from a combination of strong spin-orbit interactions and local inversion symmetry breaking. Non-negligible interlayer coupling further drives a rich three-dimensional momentum-dependence of the underlying Fermi surface spin texture. Together, these findings necessitate a fundamental re-investigation of the nature of charge order and superconducting pairing in NbSe$_2$ and related TMDCs.
We use polarized neutron scattering to demonstrate that in-plane spin excitations in electron doped superconducting BaFe1.904Ni0.096As2 (Tc=19.8 K) change from isotropic to anisotropic in the tetragonal phase well above the antiferromagnetic (AF) ordering and tetragonal-to-orthorhombic lattice distortion temperatures (Tn=Ts=33 K) without an uniaxial pressure. While the anisotropic spin excitations are not sensitive to the AF order and tetragonal-to-orthorhombic lattice distortion, superconductivity induces further anisotropy for spin excitations along the [1,1,0] and [1,-1,0] directions. These results indicate that the spin excitation anisotropy is a probe of the electronic anisotropy or orbital ordering in the tetragonal phase of iron pnictides.
The magnetic field distribution around the vortices in TmNi2B2C in the paramagnetic phase was studied experimentally as well as theoretically. The vortex form factor, measured by small-angle neutron scattering, is found to be field independent up to 0.6 Hc2 followed by a sharp decrease at higher fields. The data are fitted well by solutions to the Eilenberger equations when paramagnetic effects due to the exchange interaction with the localized 4f Tm moments are included. The induced paramagnetic moments around the vortex cores act to maintain the field contrast probed by the form factor.
The BCS picture of superconductivity describes pairing between electrons originating from a single band. A generalization of this picture occurs in multi-band superconductors, where electrons from two or more bands contribute to superconductivity. The contributions of the different bands can result in an overall enhancement of the critical field and can lead to qualitative changes in the temperature dependence of the upper critical field when compared to the single-band case. While the role of orbital pair-breaking on the critical field of multi-band superconductors has been explored extensively, paramagnetic and spin-orbital scattering effects have received comparatively little attention. Here we investigate this problem using thin films of Nd-doped SrTiO$_3$. We furthermore propose a model for analyzing the temperature-dependence of the critical field in the presence of orbital, paramagnetic and spin-orbital effects, and find a very good agreement with our data. Interestingly, we also observe a dramatic enhancement in the out-of-plane critical field to values well in excess of the Chandrasekhar-Clogston (Pauli) paramagnetic limit, which can be understood as a consequence of multi-band effects in the presence of spin-orbital scattering.
Whether it occurs in superconductors, helium-3 or inside a neutron star, fermionic superfluidity requires pairing of fermions, particles with half-integer spin. For an equal mixture of two states of fermions (spin up and spin down), pairing can be complete and the entire system will become superfluid. When the two populations of fermions are unequal, not every particle can find a partner. Will the system nevertheless stay superfluid? Here we study this intriguing question in an unequal mixture of strongly interacting ultracold fermionic atoms. The superfluid region vs population imbalance is mapped out by employing two complementary indicators: The presence or absence of vortices in a rotating mixture, as well as the fraction of condensed fermion pairs in the gas. Due to the strong interactions near a Feshbach resonance, the superfluid state is remarkably stable in response to population imbalance. The final breakdown of superfluidity marks a new quantum phase transition, the Pauli limit of superfluidity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا