Do you want to publish a course? Click here

Fermionic Superfluidity with Imbalanced Spin Populations and the Quantum Phase Transition to the Normal State

37   0   0.0 ( 0 )
 Added by Martin W. Zwierlein
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Whether it occurs in superconductors, helium-3 or inside a neutron star, fermionic superfluidity requires pairing of fermions, particles with half-integer spin. For an equal mixture of two states of fermions (spin up and spin down), pairing can be complete and the entire system will become superfluid. When the two populations of fermions are unequal, not every particle can find a partner. Will the system nevertheless stay superfluid? Here we study this intriguing question in an unequal mixture of strongly interacting ultracold fermionic atoms. The superfluid region vs population imbalance is mapped out by employing two complementary indicators: The presence or absence of vortices in a rotating mixture, as well as the fraction of condensed fermion pairs in the gas. Due to the strong interactions near a Feshbach resonance, the superfluid state is remarkably stable in response to population imbalance. The final breakdown of superfluidity marks a new quantum phase transition, the Pauli limit of superfluidity.

rate research

Read More

The quantum spin fluctuations of the S = 1/2 Cu ions are important in determining the physical properties of the high-transition temperature (high-Tc) copper oxide superconductors, but their possible role in the electron pairing for superconductivity remains an open question. The principal feature of the spin fluctuations in optimally doped high-Tc superconductors is a well defined magnetic resonance whose energy (Er) tracks Tc (as the composition is varied) and whose intensity develops like an order parameter in the superconducting state. We show that the suppression of superconductivity and its associated condensation energy by a magnetic field in the electron-doped high-Tc superconductor, Pr0.88LaCe0.12CuO4-d (Tc = 24 K), is accompanied by the complete suppression of the resonance and the concomitant emergence of static antiferromagnetic (AF) order. Our results demonstrate that the resonance is intimately related to the superconducting condensation energy, and thus suggest that it plays a role in the electron pairing and superconductivity.
In physical systems, coupling to the environment gives rise to dissipation and decoherence. For nanoscopic materials this may be a determining factor of their physical behavior. However, even for macroscopic many-body systems, if the strength of this coupling is sufficiently strong, their ground state properties and phase diagram may be severely modified. Also dissipation is essential to allow a system in the presence of a time dependent perturbation to attain a steady, time independent state. In this case, the non-equilibrium phase diagram depends on the intensity of the perturbation and on the strength of the coupling of the system to the outside world. In this paper, we investigate the effects of both, dissipation and time dependent external sources in the phase diagram of a many-body system at zero and finite temperatures. For concreteness we consider the specific case of a superconducting layer under the action of an electric field and coupled to a metallic substrate. The former arises from a time dependent vector potential minimally coupled to the electrons in the layer. We introduce a Keldysh approach that allows to obtain the time dependence of the superconducting order parameter in an adiabatic regime. We study the phase diagram of this system as a function of the electric field, the coupling to the metallic substrate and temperature.
137 - J. Zaanen 2009
Recently it was discovered that the jump in the specific heat at the superconducting transition in pnictide superconductors is proportional to the superconducting transition temperature to the third power, with the superconducting transition temperature varying from 2 to 25 Kelvin including underdoped and overdoped cases. Relying on standard scaling notions for the thermodynamics of strongly interacting quantum critical states, it is pointed out that this behavior is consistent with a normal state that is a quantum critical metal undergoing a pairing instability.
We report a Fe Kbeta x-ray emission spectroscopy study of local magnetic moments in the rare-earth doped iron pnictide Ca_{1-x}RE_xFe_2As_2 (RE=La, Pr, and Nd). In all samples studied the size of the Fe local moment is found to decrease significantly with temperature and goes from ~0.9 mu_B at T = 300 K to ~0.45 mu_B at T = 70 K. In the collapsed tetragonal (cT) phase of Nd- and Pr-doped samples (T<70K) the local moment is quenched, while the moment remains unchanged for the La-doped sample, which does not show lattice collapse. Our results show that Ca_{1-x}RE_xFe_2As_2 (RE= Pr and Nd) exhibits a spin-state transition and provide direct evidence for a non-magnetic Fe^{2+} ion in the cT-phase, as predicted by Yildirim. We argue that the gradual change of the the spin-state over a wide temperature range reveals the importance of multiorbital physics, in particular the competition between the crystal field split Fe 3d orbitals and the Hunds rule coupling.
The phase diagram of underdoped cuprates in a magnetic field ($H$) is the key ingredient in understanding the anomalous normal state of these high-temperature superconductors. However, the upper critical field ($H_{c2}$) or the extent of superconducting phase with vortices, a type of topological excitations, and the role of charge orders that are present at high $H$, remain under debate. We address these questions by studying stripe-ordered La-214, i.e. cuprates in which charge orders are most pronounced and zero-field transition temperatures $T_{c}^{0}$ are lowest; the latter opens a much larger energy scale window to explore the vortex phases compared to previous studies. By combining linear and nonlinear transport techniques sensitive to vortex matter, we determine the $T$-$H$ phase diagram, directly detect $H_{c2}$, and reveal novel properties of the high-field ground state. Our results demonstrate that, while the vortex phase diagram of underdoped cuprates is not very sensitive to the details of the charge orders, quantum fluctuations and disorder play a key role as $Trightarrow 0$. The presence of stripes, on the other hand, seems to alter the nature of the anomalous normal state, such that the high-field ground state is a metal, as opposed to an insulator.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا