The correlation-driven metal-insulator transition (MIT) of BaVS$_3$ was studied by polarized infrared spectroscopy. In the metallic state two types of electrons coexist at the Fermi energy: The quasi 1D metallic transport of $A_{1g}$ electrons is superimposed on the isotropic hopping conduction of localized $E_g$ electrons. The bad-metal character and the weak anisotropy are the consequences of the large effective mass $m_{eff}approx7m_e$ and scattering rate $Gammageq160$ meV of the quasi-particles in the $A_{1g}$ band. There is a pseudo-gap above $T_{MI}=69$ K, and in the insulating phase the gap follows the BCS-like temperature dependence of the structural order parameter with $Delta_{ch}approx42$ meV in the ground state. The MIT is described in terms of a weakly coupled two-band model.
The optical conductivity of charge carriers coupled to quantum phonons is studied in the framework of the one-dimensional spinless Holstein model. For one electron, variational diagonalisation yields exact results in the thermodynamic limit, whereas at finite carrier density analytical approximations based on previous work on single-particle spectral functions are obtained. Particular emphasis is put on deviations from weak-coupling, small-polaron or one-electron theories occurring at intermediate coupling and/or finite carrier density. The analytical results are in surprisingly good agreement with exact data, and exhibit the characteristic polaronic excitations observed in experiments on manganites.
Oxygen packaging in transition metal oxides determines the metal-oxygen hybridization and electronic occupation at metal orbitals. Strontium vanadate (SrVO$_3$), having a single electron in a $3d$ orbital, is thought to be the simplest example of strongly correlated metallic oxides. Here, we determine the effects of epitaxial strain on the electronic properties of SrVO$_3$ thin films, where the metal-oxide sublattice is corner-connected. Using x-ray absorption and x-ray linear dichroism at the V $L_{2,3}$ and O $K$-edges, it is observed that tensile or compressive epitaxial strain change the hierarchy of orbitals within the $t_{2g}$ and $e_g$ manifolds. Data show a remarkable $2p-3d$ hybridization, as well as a strain-induced reordering of the V $3d$($t_{2g}$, $e_g$) orbitals. The latter is itself accompanied by a consequent change of hybridization that modulates the hybrid $pi^*$ and $sigma^*$ orbitals and the carrier population at the metal ions, challenging a rigid band picture.
Polarization dependent vanadium L edge X-ray absorption spectra of BaVS$_3$ single crystals are measured in the four phases of the compound. The difference between signals with the polarization textbf{E}$perp$textbf{c} and textbf{E}$parallel$textbf{c} (linear dichroism) changes with temperature. Besides increasing intensity of one of the maxima, a new structure appears in the pre-edge region below the metal-insulator transition. More careful examination brings to light that the changes start already with pretransitional charge density wave fluctuations. Simple symmetry analysis suggests that the effect is related to rearrangements in $E_{g}$ and $A_{1g}$ states, and is compatible with the formation of four inequivalent V sites along the V-S chain.
We present accurate results for optical conductivity of the three dimensional Frohlich polaron in all coupling regimes. The systematic-error free diagrammatic quantum Monte Carlo method is employed where the Feynman graphs for the momentum-momentum correlation function in imaginary time are summed up. The real-frequency optical conductivity is obtained by the analytic continuation with stochastic optimization. We compare numerical data with available perturbative and non-perturbative approaches to the optical conductivity and show that the picture of sharp resonances due to relaxed excited states in the strong coupling regime is ``washed outby large broadening of these states. As a result, the spectrum contains only a single-maximum broad peak with peculiar shape and a shoulder.
La$_2$O$_3$Fe$_2$Se$_2$ can be explained in terms of Mott localization in sharp contrast with the metallic behavior of FeSe and other parent parent compounds of iron superconductors. We demonstrate that the key ingredient that makes La$_2$O$_3$Fe$_2$Se$_2$ a Mott insulator, rather than a correlated metal dominated by the Hunds coupling is the enhanced crystal-field splitting, accompanied by a smaller orbital-resolved kinetic energy. The strong deviation from orbital degeneracy introduced by the crystal-field splitting also pushes this materials close to an orbital-selective Mott transition. We predict that either doping or uniaxial external pressure can drive the material into an orbital-selective Mott state, where only one or few orbitals are metallized while the others remain insulating.