Do you want to publish a course? Click here

Orbital Occupancy and Hybridization in Strained SrVO$_3$ Epitaxial Films

289   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Oxygen packaging in transition metal oxides determines the metal-oxygen hybridization and electronic occupation at metal orbitals. Strontium vanadate (SrVO$_3$), having a single electron in a $3d$ orbital, is thought to be the simplest example of strongly correlated metallic oxides. Here, we determine the effects of epitaxial strain on the electronic properties of SrVO$_3$ thin films, where the metal-oxide sublattice is corner-connected. Using x-ray absorption and x-ray linear dichroism at the V $L_{2,3}$ and O $K$-edges, it is observed that tensile or compressive epitaxial strain change the hierarchy of orbitals within the $t_{2g}$ and $e_g$ manifolds. Data show a remarkable $2p-3d$ hybridization, as well as a strain-induced reordering of the V $3d$($t_{2g}$, $e_g$) orbitals. The latter is itself accompanied by a consequent change of hybridization that modulates the hybrid $pi^*$ and $sigma^*$ orbitals and the carrier population at the metal ions, challenging a rigid band picture.



rate research

Read More

The multi-orbital Hubbard model is known to host various ordered states such as antiferromagnetism, ferromagnetism and orbital-order. Here we propose an engineered system - an ultrathin SrVO$_3$ film - to realize all said orders upon carrier doping, achievable with realistic gate-voltages. As a central observation we find that throughout the phase diagram, dominant non-local fluctuations lead to a momentum differentiation of the self-energy, particularly the scattering rate. In contrast to the pseudogap behavior in the one-band Hubbard model, here in the multi-band case the differentiation is between momenta on the occupied and unoccupied side of the Fermi surface. Our work, based on the dynamical vertex approximation, hence complements the understanding of spectral signatures of nearby second order phase transitions and calls to reexamine the momentum differentiation in other systems using methods beyond dynamical mean-field theory.
Manipulating the orbital occupation of valence electrons via epitaxial strain in an effort to induce new functional properties requires considerations of how changes in the local bonding environment affect the band structure at the Fermi level. Using synchrotron radiation to measure the x-ray linear dichroism of epitaxially strained films of the correlated oxide CaFeO3, we demonstrate that the orbital polarization of the Fe valence electrons is opposite from conventional understanding. Although the energetic ordering of the Fe 3d orbitals is confirmed by multiplet ligand field theory analysis to be consistent with previously reported strain-induced behavior, we find that the nominally higher energy orbital is more populated than the lower. We ascribe this inverted orbital polarization to an anisotropic bandwidth response to strain in a compound with nearly filled bands. These findings provide an important counterexample to the traditional understanding of strain-induced orbital polarization and reveal a new method to engineer otherwise unachievable orbital occupations in correlated oxides.
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkable properties as the Mott gap opening, enhanced effective mass, and anomalous vibronic coupling, to mention a few. SrVO$_3$, with V$^{4+}$ in a $3d^1$ electronic configuration is the simplest example of a 3D correlated metallic electronic system. Here, we focus on the observation of a (roughly) quadratic temperature dependence of the inverse electron mobility of this seemingly simple system, which is an intriguing property shared by other metallic oxides. The systematic analysis of electronic transport in SrVO$_3$ thin films discloses the limitations of the simplest picture of e-e correlations in a Fermi liquid; instead, we show that the quasi-2D topology of the Fermi surface and a strong electron-phonon coupling, contributing to dress carriers with a phonon cloud, play a pivotal role on the reported electron spectroscopic, optical, thermodynamic and transport data. The picture that emerges is not restricted to SrVO$_3$ but can be shared with other $3d$ and $4d$ metallic oxides.
YBa$_2$Cu$_3$O$_{7-delta}$ is a good candidate to systematically study high-temperature superconductivity by nanoengineering using advanced epitaxy. An essential prerequisite for these studies are coherently strained YBa$_2$Cu$_3$O$_{7-delta}$ thin films, which we present here using NdGaO$_3$ (110) as a substrate. The films are coherent up to at least 100 nm thickness and have a critical temperature of 89$pm$1 K. The $a$ and $b$ lattice parameters of the YBa$_2$Cu$_3$O$_{7-delta}$ are matched to the in-plane lattice parameters of NdGaO$_3$ (110), resulting in a large reduction of the orthorhombicity of the YBa$_2$Cu$_3$O$_{7-delta}$. These results imply that a large amount of structural disorder in the chain layers of YBa$_2$Cu$_3$O$_{7-delta}$ is not detrimental to superconductivity.
Several spin systems with low dimensionality develop a spin-dimer phase within a molecular orbital below TS, competing with long-range antiferromagnetic order. Very often, preferential orbital occupancy and ordering are the actual driving force for dimerization, as in the so-called orbitally-driven spin-Peierls compounds (MgTi2O4, CuIr2S4, La4Ru2O10, NaTiSi2O6, etc.). Through a microscopic analysis of the thermal conductivity k (T) in La4Ru2O10, we show that the orbital occupancy fluctuates rapidly above TS, resulting in an orbital-liquid state. The strong orbital-lattice coupling introduces dynamic bond-length fluctuations that scatter the phonons to produce a k (T) proportional to T (i.e. glass-like) above TS. This phonon-glass to phonon-crystal transition is shown to occur in other spin-dimer systems, like NaTiSi2O6, pointing to a general phenomenon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا