Do you want to publish a course? Click here

Evidence for non-conventional pairing in Na$_x$CoO$_2$$cdot$yH$_2$O

134   0   0.0 ( 0 )
 Added by Jean-Pascal Rueff
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on first investigation of the lattice dynamics in the novel superconducting material Na$_{0.35}$CoO$_2$$cdot$1.3H$_2$O and the non-hydrated parent compound Na$_{0.7}$CoO$_2$ by inelastic x-ray scattering. The measured phonon dispersion along the $Gamma-M$ direction show a marked softening with hole doping of two optical phonon branches close to the Brillouin zone boundary. The phonon spectra, dispersion, and softening are well reproduced by first-principle calculations. The calculations indicates that the soft branches are mainly composed of Co-vibration modes. The estimation of the critical temperature based on electron-phonon coupling mechanism undisputedly points to a non-conventional superconducting state in this material.



rate research

Read More

162 - L. Shan , H. Gao , Y.G. Shi 2003
The single electron tunneling spectroscopy on superconductor Na$_{x}$CoO$_2$$cdot$ yH$_2$O and its starting compound Na$_{x}$CoO$_2$ has been studied with point-contact method. The spectra of Na$_{x}$CoO$_2$ have two types of distinct shapes at different random locations, this is attributed to the non-uniformly distributed sodium escaped from the inner part of the sample. While all the measured spectra of the superconducting samples Na$_{x}$CoO$_2$$cdot$ yH$_2$O have a good spatial reproducibility, and show a remarkable zero bias conductance depression appearing below an onset temperature which associates very well with the resistance upturn at around 45 K. The latter behavior resembles in some way the pseudogap feature in high-T$_c$ cuprate uperconductors.
We propose a minimal model resolving a puzzle of enigmatic correlations observed in sodium-rich Na$_x$CoO$_2$ where one expects a simple, free motion of the dilute $S=1/2$ holes doped into a band insulator NaCoO$_2$. The model also predicts singlet superconductivity at experimentally observed compositions. The model is based on a key property of cobalt oxides -- the spin-state quasidegeneracy of CoO$_6$ octahedral complex -- leading to an unusual physics of, {it e.g.}, LaCoO$_3$. We show that correlated hopping between $t_{2g}$ and $e_g$ states leads to the spin-polaron physics at $xsim 1$, and to an extended s-wave pairing at larger doping when coherent fermionic bands are formed.
Band structure of metallic sodium cobaltate Na$_x$CoO$_2$ ($x$=0.33, 0.48, 0.61 0.72) has been investigated by local density approximation+Hubbard $U$ (LDA+$U$) method and within Gutzwiller approximation for the Co-$t_{2g}$ manifold. Correlation effects being taken into account results in suppression of the $e_g$ hole pockets at the Fermi surface in agreement with recent angle-resolved photo-emission spectroscopy (ARPES) experiments. In the Gutzwiller approximation the bilayer splitting is significantly reduced due to the correlation effects. The formation of high spin (HS) state in Co $d$-shell was shown to be very improbable.
Combining symmetry based considerations with inputs from available experimental results, we make the case that a novel spin-triplet superconductivity triggered by antiferromagnetic fluctuations may be realized in the newly discovered layered cobaltide Na$_x$CoO$_{2}cdot y$H$_2$O. In the proposed picture, unaccessable via resonating-valence-bond physics extrapolated from half-filling, the pairing process is similar to that advanced for Sr$_{2}$RuO$_4$, but enjoys a further advantage coming from the hexagonal structure of the Fermi-surface which gives a stronger pairing tendency.
125 - Y. Huang , H. P. Wang , R. Y. Chen 2014
We report an optical spectroscopy study on the single crystal of Na$_2$Ti$_2$As$_2$O, a sister compound of superconductor BaTi$_2$Sb$_2$O. The study reveals unexpectedly two density wave phase transitions. The first transition at 320 K results in the formation of a large energy gap and removes most part of the Fermi surfaces. But the compound remains metallic with residual itinerant carriers. Below 42 K, another density wave phase transition with smaller energy gap scale occurs and drives the compound into semiconducting ground state. These experiments thus enable us to shed light on the complex electronic structure in the titanium oxypnictides.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا