Do you want to publish a course? Click here

Mobility in semiconducting carbon nanotubes at finite carrier density

97   0   0.0 ( 0 )
 Added by Vasili Perebeinos
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Carbon nanotube field-effect transistors operate over a wide range of electron or hole density, controlled by the gate voltage. Here we calculate the mobility in semiconducting nanotubes as a function of carrier density and electric field, for different tube diameters and temperature. The low-field mobility is a non-monotonic function of carrier density, and varies by as much as a factor of 4 at room temperature. At low density, with increasing field the drift velocity reaches a maximum and then exhibits negative differential mobility, due to the non-parabolicity of the bandstructure. At a critical density $rho_csim$ 0.35-0.5 electrons/nm, the drift velocity saturates at around one third of the Fermi velocity. Above $rho_c$, the velocity increases with field strength with no apparent saturation.



rate research

Read More

Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of carbon phosphide (CP) monolayer consisted of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as {alpha}-CP and b{eta}-CP with puckered and buckled surfaces, respectively are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The {gamma}-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest the binary CP monolayer to be yet unexplored 2D materials holding great promises for applications in high-performance electronics and optoelectronics.
We present a systematic study on low-frequency current fluctuations of nano-devices consisting of one single semiconducting nanotube, which exhibit significant 1/f-type noise. By examining devices with different switching mechanisms, carrier types (electrons vs. holes), and channel lengths, we show that the 1/f fluctuation level in semiconducting nanotubes is correlated to the total number of transport carriers present in the system. However, the 1/f noise level per carrier is not larger than that of most bulk conventional semiconductors, e.g. Si. The pronounced noise level observed in nanotube devices simply reflects on the small number of carriers involved in transport. These results not only provide the basis to quantify the noise behavior in a one-dimensional transport system, but also suggest a valuable way to characterize low-dimensional nanostructures based on the 1/f fluctuation phenomenon.
Under which conditions do the electrical transport properties of one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene become equivalent? We have performed atomistic calculations of the phonon-limited electrical mobility in graphene and in a wide range of CNTs of different types to address this issue. The theoretical study is based on a tight-binding method and a force-constant model from which all possible electron-phonon couplings are computed. The electrical resistivity of graphene is found in very good agreement with experiments performed at high carrier density. A common methodology is applied to study the transition from 1D to 2D by considering CNTs with diameter up to 16 nm. It is found that the mobility in CNTs of increasing diameter converges to the same value, the mobility in graphene. This convergence is much faster at high temperature and high carrier density. For small-diameter CNTs, the mobility strongly depends on chirality, diameter, and existence of a bandgap.
234 - D. Nakamura , T. Sasaki , W. Zhou 2015
In high magnetic fields, the exciton absorption spectrum of a semiconducting single-walled carbon nanotube splits as a result of Aharonov-Bohm magnetic flux. A magnetic field of 370 T, generated by the electro-magnetic flux compression destructive pulsed magnet-coil technique, was applied to single-chirality semiconducting carbon nanotubes. Using streak spectroscopy, we demonstrated the separation of the independent band-edge exciton states at the K and K points of the Brillouin zone after the mixing of the dark and bright states above 150 T. These results enable a quantitative discussion of the whole picture of the Aharonov-Bohm effect in single-walled carbon nanotubes.
The electronic Raman scattering (ERS) features of single-walled carbon nanotubes (SWNTs) can reveal a wealth of information about their electronic structures, but have previously been thought to appear exclusively in metallic (M-) but not in semiconducting (S-) SWNTs. We report the experimental observation of the ERS features with an accuracy of 1 meV in suspended S-SWNTs, the processes of which are accomplished via the available high-energy electron-hole pairs. The ERS features can facilitate further systematic studies on the properties of SWNT, both metallic and semiconducting, with defined chirality.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا