Do you want to publish a course? Click here

Exciton splitting in semiconducting carbon nanotubes in ultrahigh magnetic fields above 300 T

269   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In high magnetic fields, the exciton absorption spectrum of a semiconducting single-walled carbon nanotube splits as a result of Aharonov-Bohm magnetic flux. A magnetic field of 370 T, generated by the electro-magnetic flux compression destructive pulsed magnet-coil technique, was applied to single-chirality semiconducting carbon nanotubes. Using streak spectroscopy, we demonstrated the separation of the independent band-edge exciton states at the K and K points of the Brillouin zone after the mixing of the dark and bright states above 150 T. These results enable a quantitative discussion of the whole picture of the Aharonov-Bohm effect in single-walled carbon nanotubes.



rate research

Read More

In laboratories, ultrahigh magnetic fields are usually produced with very large currents through superconducting, resistive or hybrid magnets, which require extreme conditions, such as low temperature, huge cooling water or tens of megawatts of power. In this work we report that when single walled carbon nanotubes (SWNTs) are cut, there are magnetic moments at the shearing end of SWNTs. The average magnetic moment is found to be 41.5+-9.8uB per carbon atom in the end states with a width of 1 nm at temperature of 300.0K, suggesting ultrahigh magnetic fields can be produced. The dangling sigma and pi bonds of the carbon atoms at the shearing ends play important roles for this unexpectedly high magnetic moments because the oxidation temperature of cut SWNTs is found to be as low as 312 in dry air. Producing ultrahigh magnetic field with SWNTs has the advantage of working at higher working temperature and with low energy consumption, suggesting great potentials of applications.
We have measured the dynamic alignment properties of single-walled carbon nanotube (SWNT) suspensions in pulsed high magnetic fields through linear dichroism spectroscopy. Millisecond-duration pulsed high magnetic fields up to 56 T as well as microsecond-duration pulsed ultrahigh magnetic fields up to 166 T were used. Due to their anisotropic magnetic properties, SWNTs align in an applied magnetic field, and because of their anisotropic optical properties, aligned SWNTs show linear dichroism. The characteristics of their overall alignment depend on several factors, including the viscosity and temperature of the suspending solvent, the degree of anisotropy of nanotube magnetic susceptibilities, the nanotube length distribution, the degree of nanotube bundling, and the strength and duration of the applied magnetic field. In order to explain our data, we have developed a theoretical model based on the Smoluchowski equation for rigid rods that accurately reproduces the salient features of the experimental data.
Carbon nanotube field-effect transistors operate over a wide range of electron or hole density, controlled by the gate voltage. Here we calculate the mobility in semiconducting nanotubes as a function of carrier density and electric field, for different tube diameters and temperature. The low-field mobility is a non-monotonic function of carrier density, and varies by as much as a factor of 4 at room temperature. At low density, with increasing field the drift velocity reaches a maximum and then exhibits negative differential mobility, due to the non-parabolicity of the bandstructure. At a critical density $rho_csim$ 0.35-0.5 electrons/nm, the drift velocity saturates at around one third of the Fermi velocity. Above $rho_c$, the velocity increases with field strength with no apparent saturation.
167 - S. Berger 2007
We study the excitonic recombination dynamics in an ensemble of (9,4) semiconducting single-wall carbon nanotubes by high sensitivity time-resolved photo-luminescence experiments. Measurements from cryogenic to room temperature allow us to identify two main contributions to the recombination dynamics. The initial fast decay is temperature independent and is attributed to the presence of small residual bundles that create external non-radiative relaxation channels. The slow component shows a strong temperature dependence and is dominated by non-radiative processes down to 40 K. We propose a quantitative phenomenological modeling of the variations of the integrated photoluminescence intensity over the whole temperature range. We show that the luminescence properties of carbon nanotubes at room temperature are not affected by the dark/bright excitonic state coupling.
We present a systematic study on low-frequency current fluctuations of nano-devices consisting of one single semiconducting nanotube, which exhibit significant 1/f-type noise. By examining devices with different switching mechanisms, carrier types (electrons vs. holes), and channel lengths, we show that the 1/f fluctuation level in semiconducting nanotubes is correlated to the total number of transport carriers present in the system. However, the 1/f noise level per carrier is not larger than that of most bulk conventional semiconductors, e.g. Si. The pronounced noise level observed in nanotube devices simply reflects on the small number of carriers involved in transport. These results not only provide the basis to quantify the noise behavior in a one-dimensional transport system, but also suggest a valuable way to characterize low-dimensional nanostructures based on the 1/f fluctuation phenomenon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا