No Arabic abstract
We present a spectroscopic study of (Zn,Co)O layers grown by molecular beam epitaxy on sapphire substrates. (Zn,Co)O is commonly considered as a promising candidate for being a Diluted Magnetic Semiconductor ferromagnetic at room temperature. We performed magneto-optical spectroscopy in the Faraday configuration, by applying a magnetic field up to 11 T, at temperatures down to 1.5 K. For very dilute samples (less than 0.5% Co), the giant Zeeman splitting of the A and B excitons is observed at low temperature. It is proportional to the magnetization of isolated Co ions, as calculated using the anisotropy and g-factor deduced from the spectroscopy of the d-d transitions. This demonstrates the existence of spin-carrier coupling. Electron-hole exchange within the exciton has a strong effect on the giant Zeeman splitting observed on the excitons. From the effective spin-exciton coupling, <N0(Alpha-Beta)>_X=0.4 eV, we estimate the difference of the exchange integrals for free carriers, N0|Alpha-Beta|=0.8 eV. The magnetic circular dichroism observed near the energy gap was found to be proportional to the paramagnetic magnetization of anisotropic Co ions even for higher Co contents.
This work presents results of near-band gap magnetooptical studies on (Zn,Mn)O epitaxial layers. We observe excitonic transitions in reflectivity and photoluminescence, that shift towards higher energies when the Mn concentration increases and split nonlinearly under the magnetic field. Excitonic shifts are determined by the s,p-d exchange coupling to magnetic ions, by the electron-hole s-p exchange, and the spin-orbit interactions. A quantitative description of the magnetoreflectivity findings indicates that the free excitons A and B are associated with the Gamma_7 and Gamma_9 valence bands, respectively, the order reversed as compared to wurtzite GaN. Furthermore, our results show that the magnitude of the giant exciton splittings, specific to dilute magnetic semiconductors, is unusual: the magnetoreflectivity data is described by an effective exchange energy N_0(beta-alpha)=+0.2+/-0.1 eV, what points to small and positive N_0 beta. It is shown that both the increase of the gap with x and the small positive value of the exchange energy N_0 beta corroborate recent theory describing the exchange splitting of the valence band in a non-perturbative way, suitable for the case of a strong p-d hybridization.
The magnetic properties of Zn$_{1-x}$Co$_x$O ($x=0.07$ and 0.10) thin films, which were homo-epitaxially grown on a ZnO(0001) substrates with varying relatively high oxygen pressure, have been investigated using x-ray magnetic circular dichroism (XMCD) at Co $2p$ core-level absorption edge. The line shapes of the absorption spectra are the same in all the films and indicate that the Co$^{2+}$ ions substitute for the Zn sites. The magnetic-field and temperature dependences of the XMCD intensity are consistent with the magnetization measurements, indicating that except for Co there are no additional sources for the magnetic moment, and demonstrate the coexistence of paramagnetic and ferromagnetic components in the homo-epitaxial Zn$_{1-x}$Co$_{x}$O thin films, in contrast to the ferromagnetism in the hetero-epitaxial Zn$_{1-x}$Co$_{x}$O films studied previously. The analysis of the XMCD intensities using the Curie-Weiss law reveals the presence of antiferromagnetic interaction between the paramagnetic Co ions. Missing XMCD intensities and magnetization signals indicate that most of Co ions are non-magnetic probably because they are strongly coupled antiferromagnetically with each other. Annealing in a high vacuum reduces both the paramagnetic and ferromagnetic signals. We attribute the reductions to thermal diffusion and aggregation of Co ions with antiferromagnetic nanoclusters in Zn$_{1-x}$Co$_{x}$O.
Dopants of transition metal ions in II-VI semiconductors exhibit native 2+ valency. Despite this, 3+ or mixed 3+/2+ valency of iron ions in ZnO was reported previously. Several contradictory mechanisms have been put forward for explanation of this fact so far. Here, we analyze Fe valency in ZnO by complementary theoretical and experimental studies. Our calculations within the generalized gradient approximation (GGA+U) indicate that the Fe ion is a relatively shallow donor. Its stable charge state is Fe2+ in ideal ZnO, however, the high energy of the (+/0) transition level enhances the compensation of Fe2+ to Fe3+ by non-intentional acceptors in real samples. Using several experimental methods like electron paramagnetic resonance, magnetometry, conductivity, excitonic magnetic circular dichroism and magneto-photoluminescence we confirm the 3+ valency of the iron ions in polycrystalline (Zn,Fe)O films with the Fe content attaining 0.2%.We find a predicted increase of n-type conductivity upon the Fe doping with the Fe donor ionization energy of 0.25 +/- 0.02 eV consistent with the results of theoretical considerations. Moreover, our magnetooptical measurements confirm the calculated non-vanishing s,p-d exchange interaction between band carriers and localized magnetic moments of the Fe3+ ions in the ZnO, being so far an unsettled issue.
The exchange interaction between magnetic ions and charge carriers in semiconductors is considered as prime tool for spin control. Here, we solve a long-standing problem by uniquely determining the magnitude of the long-range $p-d$ exchange interaction in a ferromagnet-semiconductor (FM-SC) hybrid structure where a 10~nm thick CdTe quantum well is separated from the FM Co layer by a CdMgTe barrier with a thickness on the order of 10~nm. The exchange interaction is manifested by the spin splitting of acceptor bound holes in the effective magnetic field induced by the FM. The exchange splitting is directly evaluated using spin-flip Raman scattering by analyzing the dependence of the Stokes shift $Delta_S$ on the external magnetic field $B$. We show that in strong magnetic field $Delta_S$ is a linear function of $B$ with an offset of $Delta_{pd} = 50-100~mu$eV at zero field from the FM induced effective exchange field. On the other hand, the $s-d$ exchange interaction between conduction band electrons and FM, as well as the $p-d$ contribution for free valence band holes, are negligible. The results are well described by the model of indirect exchange interaction between acceptor bound holes in the CdTe quantum well and the FM layer mediated by elliptically polarized phonons in the hybrid structure.
Using the spectroscopies based upon x-ray absorption, we have studied the structural and magnetic properties of Zn$_{1-x}$Co$_{x}$O films ($x$ = 0.1 and 0.25) produced by reactive magnetron sputtering. These films show ferromagnetism with a Curie temperature $T_{mathrm{C}}$ above room temperature in bulk magnetization measurements. Our results show that the Co atoms are in a divalent state and in tetrahedral coordination, thus substituting Zn in the wurtzite-type structure of ZnO. However, x-ray magnetic circular dichroism at the Co textit{L}$_{2,3}$ edges reveals that the Co 3textit{d} sublattice is paramagnetic at all temperatures down to 2 K, both at the surface and in the bulk of the films. The Co 3textit{d} magnetic moment at room temperature is considerably smaller than that inferred from bulk magnetisation measurements, suggesting that the Co 3textit{d} electrons are not directly at the origin of the observed ferromagnetism.