Do you want to publish a course? Click here

Long-range p-d exchange interaction in a ferromagnet-semiconductor Co/CdMgTe/CdTe quantum well hybrid structure

124   0   0.0 ( 0 )
 Added by Ilya Akimov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The exchange interaction between magnetic ions and charge carriers in semiconductors is considered as prime tool for spin control. Here, we solve a long-standing problem by uniquely determining the magnitude of the long-range $p-d$ exchange interaction in a ferromagnet-semiconductor (FM-SC) hybrid structure where a 10~nm thick CdTe quantum well is separated from the FM Co layer by a CdMgTe barrier with a thickness on the order of 10~nm. The exchange interaction is manifested by the spin splitting of acceptor bound holes in the effective magnetic field induced by the FM. The exchange splitting is directly evaluated using spin-flip Raman scattering by analyzing the dependence of the Stokes shift $Delta_S$ on the external magnetic field $B$. We show that in strong magnetic field $Delta_S$ is a linear function of $B$ with an offset of $Delta_{pd} = 50-100~mu$eV at zero field from the FM induced effective exchange field. On the other hand, the $s-d$ exchange interaction between conduction band electrons and FM, as well as the $p-d$ contribution for free valence band holes, are negligible. The results are well described by the model of indirect exchange interaction between acceptor bound holes in the CdTe quantum well and the FM layer mediated by elliptically polarized phonons in the hybrid structure.



rate research

Read More

Hybrid structures synthesized from different materials have attracted considerable attention because they may allow not only combination of the functionalities of the individual constituents but also mutual control of their properties. To obtain such a control an interaction between the components needs to be established. For coupling the magnetic properties, an exchange interaction has to be implemented which typically depends on wave function overlap and is therefore short-ranged, so that it may be compromised across the interface. Here we study a hybrid structure consisting of a ferromagnetic Co-layer and a semiconducting CdTe quantum well, separated by a thin (Cd,Mg)Te barrier. In contrast to the expected p-d exchange that decreases exponentially with the wave function overlap of quantum well holes and magnetic Co atoms, we find a long-ranged, robust coupling that does not vary with barrier width up to more than 10 nm. We suggest that the resulting spin polarization of the holes is induced by an effective p-d exchange that is mediated by elliptically polarized phonons.
Voltage control of ferromagnetism on the nanometer scale is highly appealing for the development of novel electronic devices. Here a key challenge is to implement and combine low power consumption, high operation speed, reliable reversibility and compatibility with semiconductor technology. Hybrid structures based on the assembly of ferromagnetic and semiconducting building blocks are attractive candidates in that respect as such systems bring together the properties of the isolated constituents: They are expected to show magnetic order as a ferromagnet and to be electrically tunable as a semiconductor. Here we demonstrate the electrical control of the exchange coupling in a hybrid consisting of a ferromagnetic Co layer and a semiconductor CdTe quantum well, separated by a thin non-magnetic (Cd,Mg)Te barrier. The effective magnetic field of the exchange interaction reaches up to 2.5 Tesla and can be turned on and off by application of 1 V bias across the heterostructure. The mechanism of this electric field control is essentially different from the conventional concept, in which wavefunctions are spatially redistributed to vary the exchange interaction, requiring high field strengths. Here we address instead control of the novel exchange mechanism that is mediated by elliptically polarized phonons emitted from the ferromagnet, i.e. the phononic ac Stark effect. An essential parameter of this coupling is the splitting between heavy and light hole states in the quantum well which can be varied by the electric field induced band bending. Thereby the splitting can be tuned with respect to the magnon-phonon resonance energy in the ferromagnet, leading to maximum coupling for flat band conditions. Our results demonstrate the feasibility of electrically controlled exchange coupling in hybrid semiconductor nanostructures at quite moderate electric field strengths.
138 - G. Moody , I. A. Akimov , H. Li 2013
We present a collection of zero-, one- and two-quantum two-dimensional coherent spectra of excitons and trions in a CdTe/(Cd,Mg)Te quantum well. The set of spectra provides a unique and comprehensive picture of the exciton and trion nonlinear optical response. Exciton-exciton and exciton-trion coherent coupling is manifest as distinct peaks in the spectra, whereas signatures of trion-trion interactions are absent. Excellent agreement using density matrix calculations is obtained, which highlights the essential role of many-body effects on coherent interactions in the quantum well.
We present a spectroscopic study of (Zn,Co)O layers grown by molecular beam epitaxy on sapphire substrates. (Zn,Co)O is commonly considered as a promising candidate for being a Diluted Magnetic Semiconductor ferromagnetic at room temperature. We performed magneto-optical spectroscopy in the Faraday configuration, by applying a magnetic field up to 11 T, at temperatures down to 1.5 K. For very dilute samples (less than 0.5% Co), the giant Zeeman splitting of the A and B excitons is observed at low temperature. It is proportional to the magnetization of isolated Co ions, as calculated using the anisotropy and g-factor deduced from the spectroscopy of the d-d transitions. This demonstrates the existence of spin-carrier coupling. Electron-hole exchange within the exciton has a strong effect on the giant Zeeman splitting observed on the excitons. From the effective spin-exciton coupling, <N0(Alpha-Beta)>_X=0.4 eV, we estimate the difference of the exchange integrals for free carriers, N0|Alpha-Beta|=0.8 eV. The magnetic circular dichroism observed near the energy gap was found to be proportional to the paramagnetic magnetization of anisotropic Co ions even for higher Co contents.
We demonstrate electromagnetic interaction between distant quantum dots (QDs), as is observed from transient pump-probe differential reflectivity measurements. The QD-exciton lifetime is measured as a function of the probe photon energy and shows a strong resonant behavior with respect to the QD density of states. The observed exciton lifetime spectrum reveals a subradiance-like coupling between the QD, with a 12 times enhancement of the lifetime at the center of the ground state transition. This effect is due to a mutual electromagnetic coupling between resonant QDs, which extends over distances considerably beyond the nearest neighbor QD-QD separation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا